Semantic Networks Meet Bayesian Classifiers | SpringerLink
Skip to main content

Semantic Networks Meet Bayesian Classifiers

  • Conference paper
Mustererkennung 1996

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

This paper presents a statistical approach to object recognition and scene analysis, and is motivated by semantic networks, a knowledge representation formalism that allows to represent world knowledge at different levels of abstraction. We show how this explicit knowledge representation scheme and statistical methods can be used to model objects, object groups, and scenes. The theoretical part deals with the construction of statistical models, and preliminary results demonstrate the use of these model densities for object recognition and localization in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm.Journal of the Royal Statistical Society, Series B (Methodologicalj, 39(l):l38, 1977.

    MATH  MathSciNet  Google Scholar 

  2. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. J. Wiley, New York, 1972.

    Google Scholar 

  3. J. Hornegger. Statistische Modellierung, Klassifikation und Lokalisation von Objek-ten. Dissertation, Technische Fakultät, Universität Erlangen-Nürnberg, Erlangen, 1996.

    Google Scholar 

  4. H. Niemann, G. Sagerer, S. Schröder, and F. Kümmert. Ernest: A semantic network system for pattern analysis.IEEE Trans. Pattern Analysis and Machine Intelligence, 9:883905, 1990.

    Article  Google Scholar 

  5. M. Ross Quillian. Semantic Memory. In Marvin Minsky, editor, Semantic Information Processing, pages 216270. MIT Press, Cambridge, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hornegger, J., Nöth, E., Fischer, V., Niemann, H. (1996). Semantic Networks Meet Bayesian Classifiers. In: Jähne, B., Geißler, P., Haußecker, H., Hering, F. (eds) Mustererkennung 1996. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80294-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80294-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61585-9

  • Online ISBN: 978-3-642-80294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics