Abstract
An algorithm for the least square approximation of an empirical distribution function by a Coxian distribution function is developed. We derive a representation of the Cox distribution function in terms of divided differences of the exponential. The parameters of the distribution are subject to simple ordering constraints. We propose a variant of gradient minimization to solve the nonlinear programming problem and illustrate the method by a numerical example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T.S. Arthanari, Y. Dodge, Mathematical Programming in Statistics, J. Wiley, New York-Toronto. 1981
S. Asmussen, Applied Probability arid Queues, J. Wiley, New York-Toronto, 1987
W. Bux, U. Herzog, The Phase Concept: Approximation of Measured Data and Performance Analysis, Computer Performance, K.M. Chandy and M. Reiser (Eds.), 1977, 23 - 38
E. J. Dudewicz, Z.A. Karian, Modern Design and Analysis of Discrete-Event Simulations, IEEE Computer Society Press, Washington, 1985
J.W. Evans, W.B. Gragg, R.J. Leveque, On Least Squares Exponential Sum Approximation with Positive Coefficients, Math. Comp. (34), 1980, 203–2110
V.B. Iversen, B.F. Nielsen, Some Properties of Coxian Distributions with Applications, in: N. Abu El Ata (ed.), Modelling Techniques and Tools for Performance Analysis ’85, North- Holland, Amsterdam 1987, 61–66
D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Publishing Company, Pacific Grove, California 1991
A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces, Academic Press, New York - London 1973
S. M. Ross, Stochastic Processes, J. Wiley, New York - Toronto 1983
L. Schmickler, Approximation von empirischen Verteilungsfunktionen mit Erlangmischverteilungen und Coxverteilungen, in: U.Herzog, M.Paterok (Hrsg.), Messung, Modellierung und Bewertung von Rechensystemen, Springer 1987, 118–133
J. M. Varah, On Fitting Exponentials by Nonlinear Least Squares, SIAM J. Sci. Stat. Comp. (6) 1985, 30–44
D. V. Widder, The Laplace Transform, Princeton University Press 1946
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kramer, M. (1993). Estimating Parameters of Cox Distributions. In: Walke, B., Spaniol, O. (eds) Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78495-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-78495-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57201-5
Online ISBN: 978-3-642-78495-8
eBook Packages: Springer Book Archive