Estimating Parameters of Cox Distributions | SpringerLink
Skip to main content

Part of the book series: Informatik aktuell ((INFORMAT))

  • 40 Accesses

Abstract

An algorithm for the least square approximation of an empirical distribution function by a Coxian distribution function is developed. We derive a representation of the Cox distribution function in terms of divided differences of the exponential. The parameters of the distribution are subject to simple ordering constraints. We propose a variant of gradient minimization to solve the nonlinear programming problem and illustrate the method by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T.S. Arthanari, Y. Dodge, Mathematical Programming in Statistics, J. Wiley, New York-Toronto. 1981

    MATH  Google Scholar 

  2. S. Asmussen, Applied Probability arid Queues, J. Wiley, New York-Toronto, 1987

    Google Scholar 

  3. W. Bux, U. Herzog, The Phase Concept: Approximation of Measured Data and Performance Analysis, Computer Performance, K.M. Chandy and M. Reiser (Eds.), 1977, 23 - 38

    Google Scholar 

  4. E. J. Dudewicz, Z.A. Karian, Modern Design and Analysis of Discrete-Event Simulations, IEEE Computer Society Press, Washington, 1985

    Google Scholar 

  5. J.W. Evans, W.B. Gragg, R.J. Leveque, On Least Squares Exponential Sum Approximation with Positive Coefficients, Math. Comp. (34), 1980, 203–2110

    Google Scholar 

  6. V.B. Iversen, B.F. Nielsen, Some Properties of Coxian Distributions with Applications, in: N. Abu El Ata (ed.), Modelling Techniques and Tools for Performance Analysis ’85, North- Holland, Amsterdam 1987, 61–66

    Google Scholar 

  7. D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Publishing Company, Pacific Grove, California 1991

    MATH  Google Scholar 

  8. A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces, Academic Press, New York - London 1973

    Google Scholar 

  9. S. M. Ross, Stochastic Processes, J. Wiley, New York - Toronto 1983

    MATH  Google Scholar 

  10. L. Schmickler, Approximation von empirischen Verteilungsfunktionen mit Erlangmischverteilungen und Coxverteilungen, in: U.Herzog, M.Paterok (Hrsg.), Messung, Modellierung und Bewertung von Rechensystemen, Springer 1987, 118–133

    Google Scholar 

  11. J. M. Varah, On Fitting Exponentials by Nonlinear Least Squares, SIAM J. Sci. Stat. Comp. (6) 1985, 30–44

    Google Scholar 

  12. D. V. Widder, The Laplace Transform, Princeton University Press 1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, M. (1993). Estimating Parameters of Cox Distributions. In: Walke, B., Spaniol, O. (eds) Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78495-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78495-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57201-5

  • Online ISBN: 978-3-642-78495-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics