BIRDZ: Making Ecological Data Digestible | SpringerLink
Skip to main content

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 296))

  • 136 Accesses

Abstract

Increasingly ecologists are asked to contribute to decision-making processes in resource management and development by giving their assessment of the impact of natural and artificial environmental changes. In many cases time or resource constraints make detailed ecological studies impossible and so ecologists must make educated guesses based on available data. The accuracy of these assessments can be improved by making data more accessible to ecologists, and increasing their ability to analyse data rapidly and efficiently. User-friendly database systems are hence a vital ecological tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Abel, D.E. Application of a formal specification language to animal ecology. Ecological Modelling, 50, 205–212, 1990.

    Article  Google Scholar 

  2. Boguraev, B.K., Copestake, A.A. and Sparck Jones, K. Inference in Natural Language Front Ends. in Data and Knowledge, (R.A. Meersman and A.C. Sernadas eds.) North Holland/Elsevier Science Publications 1988.

    Google Scholar 

  3. Bratko, I. Prolog Programming for Artificial Intelligence. Second Edition. Addison-Wesley, 1989

    Google Scholar 

  4. Bundy, A. Intelligent Front Ends. In J. Fox, ed. State of the Art Report on Expert Systems, pp15–24. Pergamon Infotech, 1984. Also in proceedings of British Computer Society Specialist Group on Expert Systems 1984.

    Google Scholar 

  5. Catterall, C.P. Winter energy deficits and the importaance of fruit versus insects in a tropical island bird population. Australian Journal of Ecology (1985) 10, 265–279.

    Article  Google Scholar 

  6. Catterall, C.P. The Economics of Winter Fighting in Silvereyes. Emu 89, 173–176.

    Google Scholar 

  7. Catterall, C.P., Kikkawa, J. and Gray, C. Inter-related age-dependent patterns of ecology and behaviour in a population of Silvereyes. Journal of Animal Ecology (1989) 58, 557–570.

    Article  Google Scholar 

  8. Checkland, P. Soft Systems Methodology. In Rational Analysis for a Problematic World (J. Rosenhead ed.), chapters 4 & 5. John Wiley and Sons Ltd, 1989.

    Google Scholar 

  9. Davies, L.J. and Ledington, P.W.J. Creativity and Metaphor in Soft Systems Methodology. Journal of Applied Systems Analysis (1988) 15.

    Google Scholar 

  10. Debenham, J. Knowledge Systems Design. Prentice Hall 1989.

    Google Scholar 

  11. Haggith, M. Artificial Intelligence Tools for Ecologists in Proceedings of the Workshops of the AI 90 Conference, Perth, November 1990.

    Google Scholar 

  12. Huberman, B.A. ed. The Ecology of Computation North Holland/Elsevier Scientific Publications, 1988.

    MATH  Google Scholar 

  13. Marcus, C. Prolog Programming. Addison-Wesley 1986.

    Google Scholar 

  14. Minsky, M. A framework for representing knowledge. In Mind Design (John Haugeland ed.) pp 95–128, MIT Press, 1981.

    Google Scholar 

  15. Muetzelfeldt, R., Robertson, D., Bundy, A. and Uschold, M. The Use of Prolog for improving the rigour and accessibility of ecological modelling. Ecological Modelling, 1988.

    Google Scholar 

  16. Niven, B.S. Formalisation of the basic concepts of animal ecology. Erktennis, 17, 307–320, 1982.

    Google Scholar 

  17. Pereira, F.C.N. & Shieber, S.M. Prolog and Natural Language Analysis. CSLI Lecture Notes, Chicago University Press, Stanford, 1987.

    MATH  Google Scholar 

  18. Pilote, M. Modelling Linguistic User Interfaces. in Proc. First International Conference on Expert Database Systems. (L. Kerschberg, ed.) Charleston 1986.

    Google Scholar 

  19. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Uschold, M. Eco-Logic: Logical Perspectives on Ecological Modelling. MIT Press 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haggith, M., Sterwart-Zerba, L., Douglas, P. (1991). BIRDZ: Making Ecological Data Digestible. In: Hälker, M., Jaeschke, A. (eds) Informatik für den Umweltschutz / Computer Science for Environmental Protection. Informatik-Fachberichte, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77164-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77164-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54932-1

  • Online ISBN: 978-3-642-77164-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics