Mean Passage Times in Queueing Networks | SpringerLink
Skip to main content

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 218))

  • 47 Accesses

Abstract

Major performance measures of a queueing network are the mean time a unit (i.e. customer) spends in a sector of the network and the mean time for a unit to move from one sector to another. We give expressions for these and other mean passage times on routes in Jackson queueing networks and in more general queueing networks with congestion-dependent processing and routing. In these networks, the units may overtake one another as they move.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daduna, H. (1982). Passage Times for Overtake-Free Paths in Gordon-Newell Networks. Adv. Appl. Prob. 14, 672–686.

    Article  MathSciNet  MATH  Google Scholar 

  2. Daduna, H. (1986). Cycle Times in Two-Stage Closed Queueing Networks: Applications to Multiprogrammed Computer Systems with Virtual Memory. Operations Res. 34, 281–288.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fayolle, G., Iasnogorodski, R. and Mitrani, I. (1983). The Distribution of the Sojourn Time in a Queueing Network with Overtaking: Reduction to a Boundary Value Problem. In Performance ‘83 (eds. Agrawala, A.K. and S.K. Tripathi), North Holland, Amsterdam.

    Google Scholar 

  4. Kelly, F.P. (1979). Reversibility and Stochastic Networks. John Wiley and Sons.

    MATH  Google Scholar 

  5. Kelly, F.P. and Pollett, P.K. (1983). Sojourn Times in Closed Queueing Networks. Adv. Appl. Prob. 15, 638–656.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kook, K. (1989). Equilibrium Behavior of Markovian Network Processes. Ph.D. Thesis, Georgia Institute of Technology.

    Google Scholar 

  7. Kook, K. and R.F. Serfozo (1989). Mean Passage Times in Markovian Network Processes. Technical report Georgia Institute of Technology (in preparation).

    Google Scholar 

  8. Kuehn, P.J. (1979). Approximate Analysis of General Queueing Networks by Decomposition. IEEE Trans. Comm. COM-27, 113–126.

    Google Scholar 

  9. Lemoine, A.J. (1979). Total Sojourn Time in Networks of Queues. TR No. 79–020–1, Systems Control, Inc., Palo Alto, California.

    Google Scholar 

  10. Mckenna, J. (1989). A Generalization of Little’s Law to Moments of Queue Lengths and Waiting Times in Closed, Product-Form Queueing Networks, J. Appl. Prob. 26 121–133.

    Article  MathSciNet  MATH  Google Scholar 

  11. Melamed, B. (1982), Sojourn Times in Queueing Networks, Math. Oper. Res. 7, 223–244.

    Article  MathSciNet  MATH  Google Scholar 

  12. Reich, E. (1957). Waiting Times When Queues are in Tandem. Ann. Math. Statist. 28 768–773.

    Article  MathSciNet  MATH  Google Scholar 

  13. Serfozo, R.F. (1975). Functional Limit Theorems for Stochastic Processes Based on Embedded Processes. Adv. Appl. Prob. 1, 125–139.

    Google Scholar 

  14. Serfozo, R.F. (1989). Markovian Network Processes: Congestion-Dependent Routing and Processing. To appear in Queueing Systems.

    Google Scholar 

  15. Shassberger, R. and H. Daduna (1983). The Time for a Round Trip in a Cycle of Exponential Queues. J. ACM 30, 146–150.

    Article  Google Scholar 

  16. Walrand, J. and Varaiya, P. (1980). Sojourn Times and Overtaking Condition in Jacksonian Networks. Adv. App. Prob. 12, 1000–1018.

    Article  MathSciNet  MATH  Google Scholar 

  17. Whittle, P. (1986). Systems in Stochastic Equilibrium, John Wiley and Sons.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kook, K., Serfozo, R.F. (1989). Mean Passage Times in Queueing Networks. In: Stiege, G., Lie, J.S. (eds) Messung, Modellierung und Bewertung von Rechensystemen und Netzen. Informatik-Fachberichte, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75079-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75079-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51713-9

  • Online ISBN: 978-3-642-75079-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics