Computational Methods for Markov Chains Occurring in Queueing Theory | SpringerLink
Skip to main content

Computational Methods for Markov Chains Occurring in Queueing Theory

  • Conference paper
Messung, Modellierung und Bewertung von Rechensystemen

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 154))

Summary

An algorithmic method for computing the probability vector of finite irreducible Markov chains is developed. The block elimination scheme used is especially well suited for highly structured and/or sparse transition matrices. Special variants for block Hessenberg and tridiagonal matrices often occurring in queueing theory are derived. The algorithm is then applied to the embedded Markov chain describing the queue length in a discrete-time queue with state-dependent arrival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7349
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. J. COURTOIS, Analysis of Large Markovian Models by Parts; Applications to Queueing Network Models in: H. Beilner (ed.), Messung, Modellierung und Bewertung von Rechensystemen, 1–10 Springer, New York-Heidelberg-Berlin 1985

    Google Scholar 

  2. G.H. GOLUB, C.F. VAN LOAN, Matrix Computations Johns Hopkins University Press, Baltimore 1983

    MATH  Google Scholar 

  3. W.K. GRASSMANN, M.I. TAKSAR, D.P. HEYMAN, Regenerative Analysis and Steady State Distributions for Markov Chains Oper. Res. 33 (1985), 1107–1116

    Article  MATH  MathSciNet  Google Scholar 

  4. J.J. HUNTER, Mathematical Techniques of Applied Probability Vol. 2 Discrete Time Models: Techniques and Applications Academic Press, New York-London 1983

    Google Scholar 

  5. H. KOBAYASHI, Discrete-Time Queueing Systems in: G. Louchard, G. Latouche (eds.), Probability Theory and Computer Science, 53–84 Academic Press, New York-London 1983

    Google Scholar 

  6. M.F. NEUTS, Matrix-Geometric Solutions in Stochastic Models Johns Hopkins University Press, Baltimore 1981

    MATH  Google Scholar 

  7. S.N. RAJU, U.N. BHAT, Recursive Relations in the Computation of the Equilibrium Results of Finite Queues TIMS Studies in Man. Sci. 7 (1977), 247–270

    MathSciNet  Google Scholar 

  8. T.J. SHESKIN, A Markov Chain Partitioning Algorithm for Computing Steady State Probabilities Oper. Res. 33 (1985), 228–235

    Article  MATH  MathSciNet  Google Scholar 

  9. R. SCHASSBERGER, An Aggregation Principle for Computing Invariant Probability Vectors in Semi-Marlcovian Models in: G. Iazeolla (ed.), Mathematical Computer Performance and Reliability, 259–272 North-Holland, Amsterdam-New York-Oxford 1984

    Google Scholar 

  10. E. SENETA, Non-Negative Matrices and Markov Chains Springer, New York-Heidelberg-Berlin 1981

    MATH  Google Scholar 

  11. D. WIKARSKI, An Algorithm for the Solution of Linear Equation Systems with Block Structure E.I.K. 16 (1980), 615–620

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, M. (1987). Computational Methods for Markov Chains Occurring in Queueing Theory. In: Herzog, U., Paterok, M. (eds) Messung, Modellierung und Bewertung von Rechensystemen. Informatik-Fachberichte, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73016-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73016-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18406-5

  • Online ISBN: 978-3-642-73016-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics