Abstract
We propose a hybrid of haar wavelet decomposition, relevance vector machine, and adaptive linear neural network (HWD-RVMALNN) for the estimation of climate change behavior. The HWD-RVMALNN is able to improve estimation accuracy of climate change more than the approaches already discussed in the literature. Comparative simulation results show that the HWD-RVMALNN outperforms cyclical weight/bias rule, Levenberg-Marquardt, resilient back-propagation, support vector machine, and learning vector quantization neural networks in both estimation accuracy and computational efficiency. The model proposes in this study can provide future knowledge of climate change behavior. The future climate change behavior can be used by policy makers in formulating policies that can drastically reduce the negative impact of climate change, and be alert on possible consequences expected to occur in the future.
Chapter PDF
Similar content being viewed by others
Keywords
References
Hoegh-Guldberg, O., Bruno, J.F.: The impact of climate change on the world’s marine ecosystems. Sci. 328, 1523–1528 (2010)
Belkin, I.M.: Rapid warming of Large Marine Ecosystems. Progr. Oceanogr. 81, 207–213 (2009)
Marvin, H.J.P., Kleter, G.A., et al.: Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control 34(2), 444–456 (2013)
Matouqa, M., El-Hasan, T., Al-Bilbisi, H.: The climate change implication on Jordan: A case study using GIS and Artificial Neural Networks for weather forecasting. J. Taibah University Sci. 7, 44–55 (2013)
Goyal, M.K., Burn, D.H., Ojha, C.S.P.: Statistical downscaling of temperatures under climate change scenarios for Thames river basin, Canada. Int. J. Global Warm. 4(1), 13–30 (2012)
Holmberg, M., Forsius, M., Starr, M., Huttunen, M.: An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change. Ecol. Model. 195(1-2), 51–60 (2006)
Tripathi, S., Srinivas, V.V., Nanjundiah, R.S.: Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol. 330, 621–640 (2006)
Jammazi, R., Aloui, C.: Crude oil forecasting: experimental evidence from wavelet decomposition and neural network modeling. Energ. Econ. 34, 828–841 (2012)
Demir, B., Ertürk, S.: Hyperspectral image classification using relevance vector machines. IEEE. Geosci. Remote S. 4(4), 586–590 (2007)
Hardle, W., Kerkyacharian, G., Pikard, D., Tsybakov, A.: Wavelets, Approximation, and Statistical Applications. Lec. Notes Stat., vol. 129. Springer, New York (1998)
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing Company, Boston (2006)
Wipf, D., Palmer, J., Rao, B.: Perspective on spares Bayesian learning. In: Adv. Neural Inf. Processing Syst. 16. MIT Press, Cambridge (2004)
Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)
Richardson, K., Steffen, W., Joachim, H.S., et al.: Climate change: Global Risk, Challenges & decisions. The United Nations Framework on Climate Change Synthesis Report. University of Copenhagen, Denmark (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFIP International Federation for Information Processing
About this paper
Cite this paper
Chiroma, H., Abdulkareem, S., Abubakar, A.I., Sari, E.N., Herawan, T., Gital, A.Y. (2014). Hybridization of Haar Wavelet Decomposition and Computational Intelligent Algorithms for the Estimation of Climate Change Behavior. In: Linawati, Mahendra, M.S., Neuhold, E.J., Tjoa, A.M., You, I. (eds) Information and Communication Technology. ICT-EurAsia 2014. Lecture Notes in Computer Science, vol 8407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55032-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-55032-4_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-55031-7
Online ISBN: 978-3-642-55032-4
eBook Packages: Computer ScienceComputer Science (R0)