A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems | SpringerLink
Skip to main content

A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems

  • Conference paper
  • First Online:
Efficient Algorithms for Global Optimization Methods in Computer Vision

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8293))

  • 1375 Accesses

Abstract

This paper studies continuous image labeling problems with an arbitrary data term and a total variation regularizer, where the labels are constrained to a finite set of real numbers. Inspired by Ishikawa’s multi-layered graph construction for the same labeling problem over a discrete image domain, we propose a novel continuous max-flow model and build up its duality to a convex relaxed formulation of image labeling under a new variational perspective. Via such continuous max-flow formulations, we show that exact and global optimizers can be obtained to the original non-convex labeling problem. We also extend the studies to problems with continuous-valued labels and introduce a new theory to this problem. Finally, we show the proposed continuous max-flow models directly lead to new fast flow-maximization algorithmic schemes which outperform previous approaches in terms of efficiency. Such continuous max-flow based algorithms can be validated by convex optimization theories and accelerated by modern parallel computational hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  2. Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows. In: DICTA, pp. 987–996 (2003)

    Google Scholar 

  3. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

    Google Scholar 

  4. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 65–81 (2004)

    Article  Google Scholar 

  5. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR (2007)

    Google Scholar 

  6. Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1333–1336 (2003)

    Article  Google Scholar 

  7. Kohli, P., Kumar, M.P., Torr, P.H.: \(p^3\) and beyond: move making algorithms for solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1645–1656 (2009)

    Article  Google Scholar 

  8. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)

    Google Scholar 

  10. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. Technical report, Institute for Computer Graphics and Vision, Graz University of Technology (2010)

    Google Scholar 

  11. Bouchitt’e, G.: Recent convexity arguments in the calculus of variations. In: Lecture Notes from the 3rd International Summer School on the Calculus of Variations, Pisa (1998)

    Google Scholar 

  12. Alberti, G., Bouchitté, G., Maso, G.D.: The calibration method for the mumford-shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Eqn. 16, 299–333 (2003)

    Article  MATH  Google Scholar 

  13. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  14. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Strang, G.: Maximal flow through a domain. Math. Program. 26, 123–143 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28, 106–118 (2006)

    Article  Google Scholar 

  19. Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, pp. 2217–2224 (2010)

    Google Scholar 

  20. Yuan, J., Bae, E., Tai, X., Boykov, Y.: A study on continuous max-flow and min-cut approaches. Technical report CAM10-61, UCLA, CAM (2010)

    Google Scholar 

  21. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bae, E., Yuan, J., Tai, X., Boykov, Y.: A fast continuous max-flow approach to non-convex multilabeling problems. Technical report, UCLA, CAM-report 10-62 (2010)

    Google Scholar 

  24. Bae, E., Tai, X.-C.: Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 1–13. Springer, Heidelberg (2009)

    Google Scholar 

  25. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vision 92, 112–129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 37. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  27. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 38. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  28. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  29. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  30. Esser, J.E.: Primal dual algorithms for convex models and applications to image restoration, registration and nonlocal inpainting (2010)

    Google Scholar 

  31. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33, 81–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hyman, J.M., Shashkov, M.J.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25, 413–442 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 359–374 (2001)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Norwegian Research Council eVita project 214889 and eVita project 166075 and Natural Sciences and Engineering Research Council of Canada (NSERC) Accelerator Grant R3584A04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egil Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, E., Yuan, J., Tai, XC., Boykov, Y. (2014). A Fast Continuous Max-Flow Approach to Non-convex Multi-labeling Problems. In: Bruhn, A., Pock, T., Tai, XC. (eds) Efficient Algorithms for Global Optimization Methods in Computer Vision. Lecture Notes in Computer Science(), vol 8293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54774-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54774-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54773-7

  • Online ISBN: 978-3-642-54774-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics