Abstract
This article introduces the Proximity System, an application developed to demonstrate descriptive-based approaches to nearness and proximity within the context of digital image analysis. Specifically, the system implements the descriptive-based intersection, compliment, and difference operations defined on sets of pixels representing regions of interest. These sets of pixels can be considered visual rough sets, since the results of the descriptive-based operators are always defined with respect to a set of probe functions, which induce a partition of the objects (pixels) being considered. The contribution of this article is an overview of the Proximity System, its use of visual rough sets as description-based operands, its ability to quantify the nearness or apartness of visual rough sets, and a practical application to the problem of human visual search.
This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 418413.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The Corel Stock Photo Library (PC/MAC ver.). Corel Corporation, Ottawa, Ontario, Canada (1994)
Benjamin Jr., L.T.: A Brief History of Modern Psychology. Blackwell Publishing, Malden (2007)
Borkowski, M.: 2D to 3D Conversion with Direct Geometrical Search and Approximation Spaces. Ph.D. thesis, University of Manitoba (2007)
Borkowski, M., Peters, J.F.: Matching 2D image segments with genetic algorithms and approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 63–101. Springer, Heidelberg (2006)
Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1705–1720 (2010)
Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18, 193–222 (1995)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)
Duncan, J.: Converging levels of analysis in the cognitive neuroscience of visual attention. Philosophical Transactions: Biological Sciences 353(1373), 1307–1317 (1998)
Duncan, J., Humphreys, G., Ward, R.: Competitive brain activity in visual attention. Current Opinion in Neurobiology 7(2), 255–261 (1997)
Fang, Y., Zhen, Z., Huang, Z., Zhang, C.: Multi-objective fuzzy clustering method for image segmentation based on variable-length intelligent optimization algorithm. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 329–337. Springer, Heidelberg (2010)
Haralick, R.M.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(6), 610–621 (1973)
Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)
Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G., Henry, C.: Rough sets and near sets in medical imaging: A review. IEEE Transactions on Information Technology in Biomedicine 13(6), 955–968 (2009)
Henry, C.: Near set Evaluation And Recognition (NEAR) system. In: Pal, S.K., Peters, J.F. (eds.) Rough Fuzzy Analysis Foundations and Applications, pp. 7–1 – 7–22. CRC Press, Taylor & Francis Group (2010), http://wren.ee.umanitoba.ca
Henry, C.J.: Near Sets: Theory and Applications. Ph.D. thesis, University of Manitoba, CAN (2010), https://mspace.lib.umanitoba.ca/handle/1993/4267
Henry, C.J.: Perceptual indiscernibility, rough sets, descriptively near sets, and image analysis. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XV. LNCS, vol. 7255, pp. 41–121. Springer, Heidelberg (2012)
Henry, C.J.: Metric free nearness measure using description-based neighbourhoods. Mathematics in Computer Science 7(1), 51–69 (2013)
Henry, C.J., Peters, J.F., Hettiarchachichi, R., Ramanna, S.: Content-based image retrieval using a metric free nearness measure. In: Proceedings of the 15th IASTED International Conference on Signal and Image Processing, pp. 374–381 (2013)
Henry, C.J., Ramanna, S.: Maximal clique enumeration in finding near neighbourhoods. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 103–124. Springer, Heidelberg (2013)
Henry, C.J., Ramanna, S.: Signature-based perceptual nearness. Application of near sets to image retrieval. Mathematics in Computer Science 7(1), 71–85 (2013)
Henry, C.J., Ramanna, S., Levy, D.: Quantifying nearness in visual spaces. Cybernetics and Systems 44(1), 38–56 (2013)
Henry, C.J., Smith, G.: Proximity system. Tech. rep., Computational Intelligence Laboratory, University of Manitoba (2012), uM CI Laboratory Technical Report No. TR-2012-021
Hergenhahn, B.R.: An Introduction to the History of Psychology. Wadsworth Publishing, Belmont (2009)
Maji, P., Pal, S.K.: Maximum class separability for rough-fuzzy C-means based brain MR image segmentation. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 114–134. Springer, Heidelberg (2008)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, California (1999)
Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992)
Małyszko, D., Stepaniuk, J.: Standard and fuzzy rough entropy clustering algorithms in image segmentation. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 409–418. Springer, Heidelberg (2008)
Małyszko, D., Stepaniuk, J.: Fuzzified probabilistic rough measures in image segmentation. In: Kim, T.-h., Pal, S.K., Grosky, W.I., Pissinou, N., Shih, T.K., Ślęzak, D. (eds.) SIP/MulGraB 2010. CCIS, vol. 123, pp. 78–86. Springer, Heidelberg (2010)
Małyszko, D., Stepaniuk, J.: Probabilistic rough entropy measures in image segmentation. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 40–49. Springer, Heidelberg (2010)
Małyszko, D., Stepaniuk, J.: Rough fuzzy measures in image segmentation and analysis. In: Pal, S.K., Peters, J.F. (eds.) Rough Fuzzy Analysis Foundations and Applications, pp. 11-1–11-25. CRC Press, Taylor & Francis Group (2010) ISBN 13: 9781439803295
Małyszko, D., Stepaniuk, J.: Rough entropy hierarchical agglomerative clustering in image segmentation. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 89–103. Springer, Heidelberg (2011)
Mrózek, A., Mrózek, L.: Rough sets in image analysis. Foundations of Computing and Decision Sciences F18(3-4), 268–273 (1993)
Mushrif, M., Ray, A.K.: Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters 29(4), 483–493 (2008)
Naimpally, S.A.: Near and far. A centennial tribute to Frigyes Riesz. Siberian Electronic Mathematical Reports 6, A.1–A.10 (2009)
Naimpally, S.A.: Proximity Approach to Problems in Topology and Analysis. Oldenburg Verlag, München (2009) ISBN 978-3-486-58917-7
Naimpally, S.A., Peters, J.F.: Topology with Applications.Topological Spaces via Near and Far. World Scientific, Singapore (2013)
Naimpally, S.A., Warrack, B.D.: Proximity spaces. Cambridge Tract in Mathematics, vol. 59. Cambridge University Press, Cambridge (1970)
Orłowska, E.: Semantics of vague concepts. Applications of rough sets. Tech. Rep. 469, Institute for Computer Science, Polish Academy of Sciences (1982)
Orłowska, E.: Semantics of vague concepts. In: Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics. Problems and Solutions, pp. 465–482. Plenum Pres, London/NY (1985)
Pal, S.K., Mitra, P.: Multispectral image segmentation using rough set initialized em algorithm. IEEE Transactions on Geoscience and Remote Sensing 11, 2495–2501 (2002)
Pal, S.K., Peters, J.F.: Rough Fuzzy Image Analysis: Foundations and Methodologies. CRC Press, Boca Raton (2010)
Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 401–416 (2005)
Pavel, M.: Fundamentals of Pattern Recognition. Marcel Dekker, Inc., NY (1993)
Pawlak, Z.: Classification of objects by means of attributes. Tech. Rep. PAS 429, Institute for Computer Science, Polish Academy of Sciences (1981)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z., Peters, J.F.: Jak blisko (how near). Systemy Wspomagania Decyzji I, 57–109 (2002)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Peters, J.F.: Classification of objects by means of features. In: Proceedings of the IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI 2007), pp. 1–8 (2007)
Peters, J.F.: Near sets. General theory about nearness of objects. Applied Mathematical Sciences 1(53), 2609–2629 (2007)
Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 75(1-4), 407–433 (2007)
Peters, J.F.: Classification of perceptual objects by means of features. International Journal of Information Technology & Intelligent Computing 3(2), 1–35 (2008)
Peters, J.F.: Tolerance near sets and image correspondence. International Journal of Bio-Inspired Computation 1(4), 239–245 (2009)
Peters, J.F.: Corrigenda and addenda: Tolerance near sets and image correspondence. International Journal of Bio-Inspired Computation 2(5), 310–318 (2010)
Peters, J.F.: How near are Zdzisław Pawlak’s? In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam, pp. 545–568. Springer, Berlin (2013)
Peters, J.F.: Local near sets. pattern discovery in proximity spaces. Mathematics in Computer Science 7(1), 87–106 (2013)
Peters, J.F.: Near sets: An introduction. Mathematics in Computer Science 7(1), 3–9 (2013)
Peters, J.F., Borkowski, M.: K-means indiscernibility relation over pixels. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 580–585. Springer, Heidelberg (2004)
Peters, J.F., Naimpally, S.A.: Applications of near sets. Notices of the American Mathematical Society 59(4), 536–542 (2012)
Peters, J.F., Ramanna, S.: Affinities between perceptual granules: Foundations and perspectives. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling, pp. 49–66. Springer, Berlin (2009)
Peters, J.F., Wasilewski, P.: Foundations of near sets. Info. Sci. 179(18), 3091–3109 (2009)
Peters, J.F., Wasilewski, P.: Tolerance spaces: Origins, theoretical aspects and applications. Information Sciences 195, 211–225 (2012)
Poincaré, H.: Science and Hypothesis. The Mead Project, Brock University (1905), L. G. Ward’s translation
Polkowski, L.: Rough Sets. Mathematical Foundations. Springer, Heidelberg (2002)
Ramanna, S., Peters, J.F.: Nearness in associated rough sets: Case study in image analysis. In: Peters, G., Lingras, P., Slezak, D., Yao, Y. (eds.) Selected Methods and Applications of Rough Sets in Management and Engineering, pp. 62–73. Springer, Berlin (2011)
Sen, D., Pal, S.K.: Generalized rough sets, entropy, and image ambiguity measures. IEEE Transactions on Systems, Man, and Cybernetics - Part B 39(1), 117–128 (2009)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Sossinsky, A.B.: Tolerance space theory and some applications. Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications 5(2), 137–167 (1986)
Treisman, A.M., Gelade, G.: A feature integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)
Wolfe, J.M.: Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review 1(2), 202–238 (1994)
Yu, Y., Mann, G.K.I., Gosine, R.G.: A goal-directed visual perception system using object-based top-down attention. IEEE Transactions on Autonomous Mental Development 4(1), 87–103 (2012)
Zeeman, E.C.: The topology of the brain and the visual perception. In: Fort, K.M. (ed.) Topoloy of 3-manifolds and selected topices, pp. 240–256. Prentice Hall, New Jersey (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Henry, C.J., Smith, G. (2014). Proximity System: A Description-Based System for Quantifying the Nearness or Apartness of Visual Rough Sets. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets XVII. Lecture Notes in Computer Science, vol 8375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54756-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-54756-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54755-3
Online ISBN: 978-3-642-54756-0
eBook Packages: Computer ScienceComputer Science (R0)