Security of Device-Independent Quantum Key Distribution Protocols | SpringerLink
Skip to main content

Security of Device-Independent Quantum Key Distribution Protocols

  • Conference paper
  • First Online:
Theory of Quantum Computation, Communication, and Cryptography (TQC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6745))

Included in the following conference series:

  • 1913 Accesses

Abstract

Device-independent cryptography represent the strongest form of physical security: it is based on general physical laws and does not require any detailed knowledge or control of the physical devices used in the protocol. We discuss a general security proof valid for a large class of device-independent quantum key distribution protocols. The proof relies on the validity of Quantum Theory and requires that the events generating the raw key are causally disconnected. We then apply the proof to the chained Bell inequalities and compute the corresponding secret-key rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India, p. 175 (1984)

    Google Scholar 

  2. Acín, A., Gisin, N.: Ll. Masanes. Phys. Rev. Lett. 97, 120405 (2006)

    Article  Google Scholar 

  3. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Phys. Rev. Lett. 98, 230501 (2007)

    Article  Google Scholar 

  4. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: New J. Phys. 11, 045021 (2009)

    Article  Google Scholar 

  5. Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrett, J., Hardy, L., Kent, A.: Phys. Rev. Lett. 95, 010503 (2005)

    Article  Google Scholar 

  7. Gisin, N., Pironio, S., Sangouard, N.: Phys. Rev. Lett. 105, 070501 (2010)

    Article  Google Scholar 

  8. Mayers, D., Yao, A.: Quantum Inf. Comput. 4, 273 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quantum circuits. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 72–83. Springer, Heidelberg (2006)

    Google Scholar 

  10. Masanes, L., Pironio, S., Acín, A.: Nat. Comm. 2, 238 (2011)

    Article  Google Scholar 

  11. Hanggi, E., Renner, R.: arXiv:1009.1833

  12. Ll. Masanes, Phys. Rev. Lett. 102, 140501 (2009)

    Google Scholar 

  13. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969)

    Article  Google Scholar 

  14. Acín, A., Massar, S., Pironio, S.: New J. Phys. 8, 126 (2006)

    Article  Google Scholar 

  15. Carter, J.L., Wegman, M.N.: J. Comput. Syst. Sci. 18, 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Csiszár, I., Kröner, J.: IEEE Trans. Inf. Theor. 24, 339 (1978)

    Article  MATH  Google Scholar 

  17. Koenig, R., Renner, R., Schaffner, C.: IEEE Trans. Inf. Theor. 55, 9 (2009)

    Google Scholar 

  18. Navascues, M., Pironio, S., Acín, A.: Phys. Rev. Lett. 98, 010401 (2007)

    Article  Google Scholar 

  19. Pironio, S., Acín, A., Massar, S., Maunz, A., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: arXiv:0911.3427

  20. Braunstein, S.L., Caves, C.M.: Ann. Phys. 202, 22 (1990)

    Article  Google Scholar 

  21. Barret, J., Kent, A., Pironio, S.: Phys. Rev. Lett. 97, 170409 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish MINCIN though projects FIS2007-60182 and FIS2010-14830, CHIST-ERA DIQIP, EU Project QCS and an ERC Starting Grant PERCENT, CatalunyaCaixa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Acín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dhara, C., Masanes, L., Pironio, S., Acín, A. (2014). Security of Device-Independent Quantum Key Distribution Protocols. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54429-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54428-6

  • Online ISBN: 978-3-642-54429-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics