Abstract
A hierarchical classification ensemble methodology is proposed as a solution to the multi-class classification problem where the output from a collection of classifiers, arranged in a hierarchical manner, are combined to produce a better composite global classification (better than when the classifiers making up the ensemble operate in isolation). A novel topology for arranging the classifiers in the hierarchy is proposed such that the leaf classifiers act as binary classifiers and the remaining classifiers (those at the root and intermediate nodes) address groupings of classes. The main challenge is how to address the general drawback of the hierarchical model, that is if a record is miss-classified early on in the classification process (near the root of the hierarchy) it will continue to be miss-classified at deeper levels too. Three different approaches, founded on Naive Bayes classification, are proposed whereby Bayesian probability values are used to indicate whether single or multiple paths should be followed within the hierarchy. Reported experimental results demonstrate that the proposed mechanism can improve classification performance, in terms of average AUC, in the context of selected data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proceedings of the Ninth European Conference on Artificial Intelligence, pp. 147–149. Pitman, Stockholm (1990)
Coenen, F.: The LUCS-KDD discretised/normalised arm and carm data library (2003), http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN
Coenen, F., Leng, P.: The effect of threshold values on association rule based classification accuracy. Journal of Data and Knowledge Engineering 60(2), 345–360 (2007)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. JAIR (1995)
Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn. 29(2-3), 103–130 (1997), http://dx.doi.org/10.1023/A:1007413511361
Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)
Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall (2003)
Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)
Gangrade, A., Patel, R.: Privacy preserving three-layer nave bayes classifier for vertically partitioned databases. Journal of Information and Computing Science 8(2), 119–129 (2013)
Giacinto, G., Roli, F.: Dynamic classifier selection. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 177–189. Springer, Heidelberg (2000)
Grim, J., Kittler, J., Pudil, P., Somol, P.: Combining multiple classifiers in probabilistic neural networks. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 157–166. Springer, Heidelberg (2000)
Jiawei, H., Micheline, K., Jian, P.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2011)
Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223–228. MIT Press (1992)
Leonard, T., Hsu, J.S.: Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge University Press (2001)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
Rifkin, R.M., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)
Schapire, R.E.: Using output codes to boost multiclass learning problems. In: Machine Learning: Proceedings of the Fourteenth International Conference (ICML 1997) (1997)
Tax, D.M.J., Duin, R.P.W.: Using two-class classifiers for multiclass classification. In: ICPR, vol. (2), pp. 124–127 (2002)
Zhang, G.P.: Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 30(4), 451–462 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alshdaifat, E., Coenen, F., Dures, K. (2013). Hierarchical Classification for Solving Multi-class Problems: A New Approach Using Naive Bayesian Classification. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53914-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-53914-5_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53913-8
Online ISBN: 978-3-642-53914-5
eBook Packages: Computer ScienceComputer Science (R0)