Fuzzy Rationality Implementation in Financial Decision Making | SpringerLink
Skip to main content

Fuzzy Rationality Implementation in Financial Decision Making

  • Chapter
Soft Computing for Business Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 537))

  • 1370 Accesses

Abstract

Expected utility theory is by far the best normative theory for decision making under uncertainty. It helps the decision maker find the proper balance between expected profits and risks, and has been acknowledged as a key approach to rational economic behavior of individuals. The whole measurement process in the expected utility theory is based on the solution of preferential equations, with the help of which utilities and probabilities are being elicited. However, the resulting estimates are in an interval form, which disobeys some main rationality assumptions of the theory. Therefore, fuzzy rational decision analysis in introduced as a way to unify the normative rationality with the fuzziness of real preferences. This chapter outlines a series of practical techniques dealing with the interval nature of assessed utility and probability measures, using the intrinsic optimism-pessimism attitude of the DM. Main preference-related and uncertainty-related problems are stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdellaoui, M., Barrios, C., Wakker, P.: Reconciling Introspective Utility with Revealed Preference: Experimental Arguments Based on Prospect Theory. Journal of Econometrics 138, 356–378 (2007)

    Article  MathSciNet  Google Scholar 

  2. Augustin, T.: On Decision Making under Ambiguous Prior and Sampling Information. In: de Cooman, G., Fine, T., Moral, S. (eds.) ISIPTA 2001: Proc. Second International Symposium on Imprecise Probabilities and their Applications, pp. 9–16. Cornell University, Ithaca (2001)

    Google Scholar 

  3. Bacchus, F., Grove, A.: Utility Independence in Qualitative Decision Theory. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) Principles of Knowledge Representation and Reasoning, pp. 542–552. Morgan Kaufmann, CA (1996)

    Google Scholar 

  4. Clemen, R.: Making Hard Decisions: an Introduction to Decision Analysis, 2nd edn. Duxbury Press, Wadsworth Publishing Company (1996)

    Google Scholar 

  5. Engel, Y., Wellman, M.: CUI Networks: A Graphical Representation for Conditional Utility Independence. In: Twenty-First National Conference on Artificial Intelligence, pp. 1137–1142 (2006)

    Google Scholar 

  6. Fabrycky, W.J., Thuesen, G.J., Verma, D.: Economic Decision Analysis, 3rd edn. Prentice-Hall (1998)

    Google Scholar 

  7. Farquhar, P.H.: Research Directions in Multi-Attribute Utility Analysis. In: Hansen, P. (ed.) Essays and Surveys on Multi-Criteria Decision Making, pp. 63–85. Springer (1983)

    Google Scholar 

  8. Farquhar, P.H.: Utility Assessment Methods. Management Science 30(11), 1283–1300 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fishburn, P., Roberts, F.: Mixture Axioms in Linear and Multilinear Utility Theories. Theory and Decisions 9(9), 161–171 (2004)

    MathSciNet  Google Scholar 

  10. French, S.: Decision Theory: an Introduction to the Mathematics of Rationality. Ellis Horwood (1993)

    Google Scholar 

  11. Hackett, G., Luffrum, P.: Business Decision Analysis. An Active Learning Approach. Blackwell (1999)

    Google Scholar 

  12. Hanke, J.E., Reitsch, A.G.: Understanding Business Statistics. Irwin (1991)

    Google Scholar 

  13. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preference and Value Tradeoffs. Cambridge University Press (1993)

    Google Scholar 

  14. Kiefer, J.: Sequential Minimax Search for a Maximum. Proc. American Mathematical Society 4, 502–506 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  15. McCord, M., De Neufville, R.: Lottery Equivalents’: Reduction of the Certainty Effect Problem in Utility Assessment. Management Science 32, 56–60 (1986)

    Article  MATH  Google Scholar 

  16. Nikolova, N.D.: Arctg-approximation of monotonically decreasing utility functions. Computer Science and Technology 1, 60–69 (2007)

    MathSciNet  Google Scholar 

  17. Nikolova, N.D.: Uniform Method for Estimation of Interval Scaling Constants. Engineering and Automation Problems 1, 79–90 (2007B)

    MathSciNet  Google Scholar 

  18. Nikolova, N.D.: Three criteria to rank x-fuzzy-rational generalized lotteries of I type. Cybernetics and Information Technologies 7(1), 3–20 (2007C)

    Google Scholar 

  19. Nikolova, N.D., Shulus, A., Toneva, D., Tenekedjiev, K.: Fuzzy Rationality in Quantitative Decision Analysis. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(1), 65–69 (2005)

    Google Scholar 

  20. Nikolova, N.D., Hirota, K., Kobashikawa, C., Tenekedjiev, K.: Elicitation of Non-Monotonic Preferences of a Fuzzy Rational Decision Maker. Information Technologies and Control, Year IV 1, 36–50 (2006)

    Google Scholar 

  21. Nikolova, N.D., Toneva, D., Ahmed, S., Tenekedjiev, K.: Constructing multi-dimensional utility function under different types of preferences over the fundamental vector attributes. In: Zadeh, L., Tufis, D., Filip, F., Dzitac, I. (eds.) From Natural Language to Soft Computing: New Paradigms in Artificial Intelligence, pp. 129–149. Publishing House of the Romanian Academy (2008)

    Google Scholar 

  22. Nikolova, N.D., Tenekedjiev, K.: Fuzzy Rationality and Parameter Elicitation in Decision Analysis. International Journal of General Systems, Special Issue on Intelligent Systems 39(5), 539–556 (2010)

    MATH  MathSciNet  Google Scholar 

  23. Pratt, J.W.: Risk Аversion in the Small and in the Large. Econometrica 32, 122–136 (1964)

    Article  MATH  Google Scholar 

  24. Pratt, J.W., Raiffa, H., Schlaifer, R.: Introduction to Statistical Decision Theory. MIT Press, Cambridge (1995)

    Google Scholar 

  25. Press, W.H., Teukolski, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes – The Art of Scientific Computing. Cambridge University Press (1992)

    Google Scholar 

  26. Rapoport, A.: Decision Ttheory and Decision Behaviour – Normative and Descriptive Approaches. Kluwer Academic Publishers, USA (1989)

    Google Scholar 

  27. Stoyanov, S.: Optimization of Technological Objects. Sofia, Tehnika (1993) (in Bulgarian)

    Google Scholar 

  28. Swalm, R.: Utility Theory – Insight into Risk Taking. Harvard Business Review 44, 123–136 (1966)

    Google Scholar 

  29. Tenekedjiev, K.: Quantitative Decision Analysis: Utility Theory and Subjective Statistics. Doctor of Sciences Dissertation, Varna. Technical University, Varna (2004) (in Bulgarian)

    Google Scholar 

  30. Tenekedjiev, K., Nikolova, N.D., Pfliegl, R.: Utility elicitation with the uncertain equivalence method. Comptes Rendus De L’Academie Bulgare des Sciences 3, Book 3, 283–288 (2006A)

    Google Scholar 

  31. Tenekedjiev, K., Nikolova, N.D., Toneva, D.: Laplace Expected Utility Criterion for Ranking Fuzzy Rational Generalized Lotteries of I Type. Cybernetics and Information Technologies 6(3), 93–109 (2006B)

    Google Scholar 

  32. Tenekedjiev, K., Nikolova, N.D.: Ranking Discrete Outcome Alternatives with Partially Quantified Uncertainty. International Journal of General Systems 37(2), 249–274 (2007)

    Article  MathSciNet  Google Scholar 

  33. Tenekedjiev, K., Nikolova, N.D.: Justification and Numerical Realization of the Uniform Method for Finding Point Estimates of Interval Elicited Scaling Constants. Fuzzy Optimization and Decision Making 7(2), 119–145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Utkin, L.V.: Risk analysis under partial prior information and non-monotone utility functions. International Journal of Information Technology and Decision Making 6(4), 625–647 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wakker, P., Deneffe, D.: Eliciting von Neumann-Morgenstern Utilities when Probabilities Are Distorted or Unknown. Management Science 42, 1131–1150 (1996)

    Article  MATH  Google Scholar 

  36. Yager, R.R.: Generalizing Variance to Allow the Inclusion of Decision Attitude in Decision Making under Uncertainty. International Journal of Approximate Reasoning 42, 137–158 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Nikolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikolova, N.D., Tenekedjiev, K. (2014). Fuzzy Rationality Implementation in Financial Decision Making. In: Espin, R., Pérez, R., Cobo, A., Marx, J., Valdés, A. (eds) Soft Computing for Business Intelligence. Studies in Computational Intelligence, vol 537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53737-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53737-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53736-3

  • Online ISBN: 978-3-642-53737-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics