Abstract
In October 2012, NIST has announced Keccak as the winner of the SHA-3 cryptographic hash function competition. Recently, at CT-RSA 2013, NIST brought up the idea to standardize Keccak variants with different parameters than those submitted to the SHA-3 competition. In particular, NIST considers to reduce the capacity to the output size of the SHA-3 standard and additionally, standardize a Keccak variant with a permutation size of 800 instead of 1600 bits. However, these variants have not been analyzed very well during the SHA-3 competition. Especially for the variant using an 800-bit permutation no analysis on the hash function has been published so far.
In this work, we analyze these newly proposed Keccak variants and provide practical collisions for up to 4 rounds for all output sizes by constructing internal collisions. Our attacks are based on standard differential cryptanalysis contrary to the recent attacks by Dinur at al. from FSE 2013. We use a non-linear low probability path for the first two rounds and use methods from coding theory to find a high-probability path for the last two rounds. The low probability path as well as the conforming message pair is found using an automatic differential path search tool. Our results indicate that reducing the capacity slightly improves attacks, while reducing the permutation size degrades attacks on Keccak.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Submission to NIST (Round 3) (January 2011), http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3–72 (1991)
Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 560–577. Springer, Heidelberg (2009)
Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)
Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg (2012)
De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)
Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012)
Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (ed.) FSE. LNCS, Springer (to appear, 2013)
Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schläffer, M.: Linear Propagation in Efficient Guess-and-Determine Attacks. In: Budaghyan, L., Helleseth, T., Parker, M.G. (eds.) WCC (2013), http://www.selmer.uib.no/WCC2013/
Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. J. Cryptology 24(1), 1–23 (2011)
Mendel, F., Nad, T.: A Distinguisher for the Compression Function of SIMD-512. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 219–232. Springer, Heidelberg (2009)
Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)
Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on Reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)
National Institute of Standards and Technology: Cryptographic Hash Algorithm Competition (November 2007), http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
National Institute of Standards and Technology: SHA-3 Selection Announcement (October 2012), http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011)
Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)
Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)
Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kölbl, S., Mendel, F., Nad, T., Schläffer, M. (2013). Differential Cryptanalysis of Keccak Variants. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-45239-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45238-3
Online ISBN: 978-3-642-45239-0
eBook Packages: Computer ScienceComputer Science (R0)