Risk-Aware Recommender Systems | SpringerLink
Skip to main content

Risk-Aware Recommender Systems

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8226))

Included in the following conference series:

  • 3964 Accesses

Abstract

Context-Aware Recommender Systems can naturally be modelled as an exploration/exploitation trade-off (exr/exp) problem, where the system has to choose between maximizing its expected rewards dealing with its current knowledge (exploitation) and learning more about the unknown user’s preferences to improve its knowledge (exploration). This problem has been addressed by the reinforcement learning community but they do not consider the risk level of the current user’s situation, where it may be dangerous to recommend items the user may not desire in her current situation if the risk level is high. We introduce in this paper an algorithm named R-UCB that considers the risk level of the user’s situation to adaptively balance between exr and exp. The detailed analysis of the experimental results reveals several important discoveries in the exr/exp behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouneffouf, D., Bouzeghoub, A., Gançarski, A.L.: A contextual-bandit algorithm for mobile context-aware recommender system. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 324–331. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bouneffouf, D., Bouzeghoub, A., Gançarski, A.L.: Hybrid-ε-greedy for mobile context-aware recommender system. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 468–479. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Cherian, J.A.: Investment science: David g. luenberger. Journal of Economic Dynamics and Control 22(4), 645–646 (1998)

    Article  Google Scholar 

  4. Geibel, P., Wysotzki, F.: Risk-sensitive reinforcement learning applied to control under constraints. J. Artif. Int. Res. 24(1), 81–108 (2005)

    MATH  Google Scholar 

  5. Howard, R.A., Matheson, J.E.: Risk-sensitive markov decision processes. Management Science 18(7), 356–369 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 661–670. ACM, USA (2010)

    Chapter  Google Scholar 

  7. Li, W., Wang, X., Zhang, R., Cui, Y.: Exploitation and exploration in a performance based contextual advertising system. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 27–36. ACM, USA (2010)

    Google Scholar 

  8. Mladenic, D.: Text-learning and related intelligent agents: A survey. IEEE Intelligent Systems 14(4), 44–54 (1999)

    Article  Google Scholar 

  9. Robbins, H.: Some Aspects of the Sequential Design of Experiments. Bulletin of the American Mathematical Society 58, 527–535 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.: Policy gradients with parameter-based exploration for control. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 387–396. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Tokic, M., Ertle, P., Palm, U., Soffker, D., Voos, H.: Robust Exploration/Exploitation trade-offs in safety-critical applications. In: Proceedings of the 8th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 660–665. IFAC, Mexico City (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouneffouf, D., Bouzeghoub, A., Ganarski, A.L. (2013). Risk-Aware Recommender Systems. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics