A Novel Complex-Valued Fuzzy ARTMAP for Sparse Dictionary Learning | SpringerLink
Skip to main content

A Novel Complex-Valued Fuzzy ARTMAP for Sparse Dictionary Learning

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8226))

Included in the following conference series:

Abstract

This work extends the simplified fuzzy ARTMAP (SFAM) to a complex-valued (CV-SFAM) version which is able to work with spatio-temporal data produced in receptive fields of visual cortex. The CV-SFAM’s ability for incremental learning distinguishes CV-SFAM from other complex-valued neural networks, which provides the ability to preserve learned data while learning new samples. We considered different scales and orientations of Gabor wavelets to form a dictionary. This work takes advantage of a locally competitive algorithm (LCA) which calculates more regular sparse coefficients by combining the interactions of artificial neurons. Finally, we provide an experimental real application for biological implementation of sparse dictionary learning to recognize objects in both aligned and non-aligned images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, Y.N., Si, Z., Gong, H., Zhu, S.C.: Learning active basis model for object detection and recognition. International Journal of Computer Vision 90(2), 198–235 (2010)

    Article  MathSciNet  Google Scholar 

  2. Kasuba, T.: Simplified Fuzzy ARTMAP. AI Experts 8, 18–25 (1993)

    Google Scholar 

  3. Hirose, A.: Complex-Valued Neural Networks Fertilize Electronics. In: Hirose, A. (ed.) Complex-Valued Neural Networks, 2nd edn. SCI, vol. 400, pp. 3–8. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse coding via thresholding and local competition in neural circuits. Neural Computation 20(10), 2526–2563 (2008)

    Article  MathSciNet  Google Scholar 

  5. Aizenberg, I., Aizenberg, N.N., Vandewalle, J.P.: Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer (2000)

    Google Scholar 

  6. Noest, A.J.: Discrete-state phasor neural networks. Rapid Communications 38(4), 2196–2199 (1988)

    Google Scholar 

  7. Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proceedings of the IEEE 63(4), 719–720 (1975)

    Article  Google Scholar 

  8. Hanna, A.I., Mandic, D.P.: A fully adaptive normalized nonlinear gradient descent algorithm for complex-valued nonlinear adaptive filters. IEEE Transactions on Signal Processing 51(10), 2540–2549 (2003)

    Article  MathSciNet  Google Scholar 

  9. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39(9), 2101–2104 (1991)

    Article  Google Scholar 

  10. Kim, M.S., Guest, C.C.: Modification of backpropagation networks for complex-valued signal processing in frequency domain. In: IEEE/INNS International Joint Conference on Neural Networks, pp. 27–31 (1990)

    Google Scholar 

  11. Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Networks 10(8), 1391–1415 (1997)

    Article  Google Scholar 

  12. Su, M.C., Lee, J., Hsieh, K.L.: A new ARTMAP-based neural network for incremental learning. Neurocomputing 69(16), 2284–2300 (2006)

    Article  Google Scholar 

  13. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992)

    Article  Google Scholar 

  14. Simpson, P.K.: Fuzzy min-max neural networks. IEEE Transactions on Neural Networks 3(5), 776–786 (1992)

    Article  Google Scholar 

  15. Vakil-Baghmisheh, M.T., Pavesic, N.: A fast simplified fuzzy ARTMAP network. Neural Processing Letters 17(3), 273–316 (2003)

    Article  Google Scholar 

  16. Loo, C.K., Rao, M.V.C.: Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP. IEEE Transactions on Knowledge and Data Engineering 17(11), 1589–1593 (2005)

    Article  Google Scholar 

  17. Rajasekaran, S., Pai, G.A.V.: Image recognition using Simplified Fuzzy ARTMAP augmented with a moment based feature extractor. International Journal of Pattern Recognition and Artificial Intelligence 14(8), 1081–1095 (2000)

    Article  Google Scholar 

  18. Palaniappan, R., Eswaran, C.: Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing 9(1), 100–106 (2009)

    Article  Google Scholar 

  19. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Transactions on Fuzzy Systems 10(2), 171–186 (2002)

    Article  Google Scholar 

  20. Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Transactions on Fuzzy Systems 11(4), 450–461 (2003)

    Article  Google Scholar 

  21. Dick, S.: Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems 13(3), 405–414 (2005)

    Article  Google Scholar 

  22. Zhu, S.C., Guo, C.E., Wang, Y., Xu, Z.: What are textons? International Journal of Computer Vision 62(1-2), 121–143 (2005)

    Article  Google Scholar 

  23. Figueiredo, M.A.T.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1150–1159 (2003)

    Article  MathSciNet  Google Scholar 

  24. Atkinson, A.P., Dittrich, W.H., Gemmell, A.J., Young, A.W.: Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 33(6), 717–746 (2004)

    Article  Google Scholar 

  25. de Gelder, B.V.D., Stock, J.: The Bodily Expressive Action Stimulus Test (BEAST). Construction and Validation of a Stimulus Basis for Measuring Perception of Whole Body Expression of Emotions. Frontiers in Psychology 2(181) (2011), doi:10.3389/fpsyg.2011.00181 (accessed May 7th 2013)

    Google Scholar 

  26. Loo, C.K., Liew, W.S., Sayeed, M.S.: Genetic Ensemble Biased ARTMAP Method of ECG-Based Emotion Classification. In: Watanabe, T., Watada, J., Takahashi, N., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia: Systems & Services. SIST, vol. 14, pp. 299–306. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Loo, C.K., Cheong, S.F., Seldon, M.A., Mand, A.A., Muthu, K.S., Liew, W.S., Lim, E.: Genetic-Optimized Classifier Ensemble for Cortisol Salivary Measurement Mapping to Electrocardiogram Features for Stress Evaluation. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 274–284. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loo, C.K., Memariani, A., Liew, W.S. (2013). A Novel Complex-Valued Fuzzy ARTMAP for Sparse Dictionary Learning. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics