Abstract
This work extends the simplified fuzzy ARTMAP (SFAM) to a complex-valued (CV-SFAM) version which is able to work with spatio-temporal data produced in receptive fields of visual cortex. The CV-SFAM’s ability for incremental learning distinguishes CV-SFAM from other complex-valued neural networks, which provides the ability to preserve learned data while learning new samples. We considered different scales and orientations of Gabor wavelets to form a dictionary. This work takes advantage of a locally competitive algorithm (LCA) which calculates more regular sparse coefficients by combining the interactions of artificial neurons. Finally, we provide an experimental real application for biological implementation of sparse dictionary learning to recognize objects in both aligned and non-aligned images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, Y.N., Si, Z., Gong, H., Zhu, S.C.: Learning active basis model for object detection and recognition. International Journal of Computer Vision 90(2), 198–235 (2010)
Kasuba, T.: Simplified Fuzzy ARTMAP. AI Experts 8, 18–25 (1993)
Hirose, A.: Complex-Valued Neural Networks Fertilize Electronics. In: Hirose, A. (ed.) Complex-Valued Neural Networks, 2nd edn. SCI, vol. 400, pp. 3–8. Springer, Heidelberg (2012)
Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse coding via thresholding and local competition in neural circuits. Neural Computation 20(10), 2526–2563 (2008)
Aizenberg, I., Aizenberg, N.N., Vandewalle, J.P.: Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer (2000)
Noest, A.J.: Discrete-state phasor neural networks. Rapid Communications 38(4), 2196–2199 (1988)
Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proceedings of the IEEE 63(4), 719–720 (1975)
Hanna, A.I., Mandic, D.P.: A fully adaptive normalized nonlinear gradient descent algorithm for complex-valued nonlinear adaptive filters. IEEE Transactions on Signal Processing 51(10), 2540–2549 (2003)
Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39(9), 2101–2104 (1991)
Kim, M.S., Guest, C.C.: Modification of backpropagation networks for complex-valued signal processing in frequency domain. In: IEEE/INNS International Joint Conference on Neural Networks, pp. 27–31 (1990)
Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Networks 10(8), 1391–1415 (1997)
Su, M.C., Lee, J., Hsieh, K.L.: A new ARTMAP-based neural network for incremental learning. Neurocomputing 69(16), 2284–2300 (2006)
Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992)
Simpson, P.K.: Fuzzy min-max neural networks. IEEE Transactions on Neural Networks 3(5), 776–786 (1992)
Vakil-Baghmisheh, M.T., Pavesic, N.: A fast simplified fuzzy ARTMAP network. Neural Processing Letters 17(3), 273–316 (2003)
Loo, C.K., Rao, M.V.C.: Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP. IEEE Transactions on Knowledge and Data Engineering 17(11), 1589–1593 (2005)
Rajasekaran, S., Pai, G.A.V.: Image recognition using Simplified Fuzzy ARTMAP augmented with a moment based feature extractor. International Journal of Pattern Recognition and Artificial Intelligence 14(8), 1081–1095 (2000)
Palaniappan, R., Eswaran, C.: Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing 9(1), 100–106 (2009)
Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Transactions on Fuzzy Systems 10(2), 171–186 (2002)
Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Transactions on Fuzzy Systems 11(4), 450–461 (2003)
Dick, S.: Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems 13(3), 405–414 (2005)
Zhu, S.C., Guo, C.E., Wang, Y., Xu, Z.: What are textons? International Journal of Computer Vision 62(1-2), 121–143 (2005)
Figueiredo, M.A.T.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1150–1159 (2003)
Atkinson, A.P., Dittrich, W.H., Gemmell, A.J., Young, A.W.: Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 33(6), 717–746 (2004)
de Gelder, B.V.D., Stock, J.: The Bodily Expressive Action Stimulus Test (BEAST). Construction and Validation of a Stimulus Basis for Measuring Perception of Whole Body Expression of Emotions. Frontiers in Psychology 2(181) (2011), doi:10.3389/fpsyg.2011.00181 (accessed May 7th 2013)
Loo, C.K., Liew, W.S., Sayeed, M.S.: Genetic Ensemble Biased ARTMAP Method of ECG-Based Emotion Classification. In: Watanabe, T., Watada, J., Takahashi, N., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia: Systems & Services. SIST, vol. 14, pp. 299–306. Springer, Heidelberg (2012)
Loo, C.K., Cheong, S.F., Seldon, M.A., Mand, A.A., Muthu, K.S., Liew, W.S., Lim, E.: Genetic-Optimized Classifier Ensemble for Cortisol Salivary Measurement Mapping to Electrocardiogram Features for Stress Evaluation. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 274–284. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loo, C.K., Memariani, A., Liew, W.S. (2013). A Novel Complex-Valued Fuzzy ARTMAP for Sparse Dictionary Learning. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-42054-2_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42053-5
Online ISBN: 978-3-642-42054-2
eBook Packages: Computer ScienceComputer Science (R0)