Abstract
A key-encapsulation mechanism (KEM) is a cryptographic primitive that allows anyone in possession of some party’s public key to securely transmit a key to that party. A KEM can be viewed as a key-exchange protocol in which only a single message is transmitted; the main application is in combination with symmetric encryption to achieve public-key encryption of messages of arbitrary length.
The security of KEMs is usually defined in terms of a certain game that no efficient adversary can win with non-negligible advantage. A main drawback of game-based definitions is that they often do not have clear semantics, and that the security of each higher-level protocol that makes use of KEMs needs to be proved by showing a tailor-made security reduction from breaking the security of the KEM to breaking the security of the combined protocol.
We propose a novel approach to the security and applications of KEMs, following the constructive cryptography paradigm by Maurer and Renner (ICS 2011). The goal of a KEM is to construct a resource that models a shared key available to the honest parties. This resource can be used in designing and proving higher-level protocols; the composition theorem guarantees the security of the combined protocol without the need for a specific reduction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: 38th FOCS, pp. 394–403 (1997)
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)
Buchmann, J., Düllmann, S., Williams, H.C.: On the Complexity and Efficiency of a New Key Exchange System. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 597–616. Springer, Heidelberg (1990)
Buchmann, J., Williams, H.C.: A Key-Exchange System Based on Imaginary Quadratic Fields. Journal of Cryptology 1(2), 107–118 (1988)
Buchmann, J., Williams, H.C.: A Key Exchange System Based on Real Quadratic Fields. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 335–343. Springer, Heidelberg (1990)
Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067 (2000)
Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)
Coretti, S., Maurer, U., Tackmann, B.: Constructing Confidential Channels from Authenticated Channels—Public-Key Encryption Revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. Springer, Heidelberg (2013)
Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33, 167–226 (2001)
Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: 19th ACM STOC, pp. 218–229 (1987)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems (Extended Abstract). In: 17th ACM STOC, pp. 291–304 (1985)
Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for secure hybrid encryption. Cryptology ePrint Archive, Report 2006/265 (2006), http://eprint.iacr.org/
Hofheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework. Cryptology ePrint Archive, Report 2011/303 (2011)
Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)
Maurer, U.: Constructive Cryptography—A New Paradigm for Security Definitions and Proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012)
Maurer, U., Renner, R.: Abstract Cryptography. In: Chazelle, B. (ed.) The Second Symposium in Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua University Press (January 2011)
Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and Integrity: A Constructive Perspective. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 209–229. Springer, Heidelberg (2012)
Maurer, U., Schmid, P.E.: A Calculus for Security Bootstrapping in Distributed Systems. Journal of Computer Security 4(1), 55–80 (1996)
Maurer, U., Tackmann, B., Coretti, S.: Key Exchange with Unilateral Authentication: Composable Security Definition and Modular Protocol Design. Cryptology ePrint Archive, Report 2013/555 (2013)
Nagao, W., Manabe, Y., Okamoto, T.: A Universally Composable Secure Channel Based on the KEM-DEM Framework. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 426–444. Springer, Heidelberg (2005)
Scheidler, R., Buchmann, J., Williams, H.C.: Implementation of a Key Exchange Protocol Using Some Real Quadratic Fields. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 98–109. Springer, Heidelberg (1991)
Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption. IACR Cryptology ePrint Archive 2001, 112 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Coretti, S., Maurer, U., Tackmann, B. (2013). A Constructive Perspective on Key Encapsulation. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-42001-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42000-9
Online ISBN: 978-3-642-42001-6
eBook Packages: Computer ScienceComputer Science (R0)