Abstract
We present the Calculus of Chemical Systems for the modular presentation of systems of chemical equations; it is intended to be a core calculus for rule-based modelling in systems biology. The calculus is loosely modelled after Milner’s Calculus of Communicating Systems, but with communication replaced by chemical reactions. We give a variety of compositional semantics for qualitative and quantitative versions of our calculus, employing a commutative monoid semantical framework. These semantics include (qualitative and quantitative) Petri nets, transition relations, ordinary differential equations (ODEs), and stochastic matrices. Standard semantics of Petri nets, whether of transition relations, ODEs, or stochastic matrices, fit within the framework as commutative monoid homomorphisms. We give complete equational axiomatisations and normal forms for all the semantics, and full abstraction results for the ODE and stochastic semantics. Definability can be characterised in some cases, as was already known for ODEs; other cases, including the stochastic one, remain open.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)
Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)
Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)
Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)
Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210–219 (2007)
Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)
Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)
Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Princeton University Press (1989)
Domijan, M., Kirkilionis, M.: Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media 3(2), 295–322 (2008)
Fiore, M.P., Jung, A., Moggi, E., O’Hearn, P., Riecke, J., Rosolini, G., Stark, I.: Domains and denotational semantics: history, accomplishments and open problems. Bulletin of the European Association for Theoretical Computer Science 59, 227–256 (1996)
Garrington, T.P., Johnson, G.L.: Organization and regulation of mitogen-activated protein kinase signaling pathways. Current Opinion in Cell Biology 11, 211–218 (1999)
Groote, J.F., Voorhoeve, M.: Operational semantics for Petri net components. Theor. Comput. Sci. 379(1-2), 1–19 (2007)
Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M., Hatvani, L. (eds.) Qualitative Theory of Differential Equations. Coll. Math. Soc. J. Bolyai, vol. 30, pp. 363–379. North-Holland (1981)
Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)
Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE 2006(344), re6 (2006)
Hudjaev, S.I., Vol’pert, A.I.: Analysis in classes of discontinuous functions and equations of mathematical physics. Mechanics: Analysis 8 (1985)
Ivanova, A.N.: Conditions for uniqueness of stationary state of kinetic systems related to structural scheme of reactions. Kinet. Katal. 20(4), 1019–1023 (1979)
Kaltenbach, H.-M., Stelling, J.: Modular analysis of biological networks. In: Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol. 736, Part 1, pp. 3–17. Springer (2012)
Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Monographs in Theoretical Computer Science, vol. 1. Springer (1992)
Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1(5), 169–176 (2003)
Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)
Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction maps of bioregulatory networks: A general rubric for systems biology. Mol. Biol. Cell 17, 1–13 (2006)
Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. CUP (1999)
Matsuno, H., Li, C., Miyano, S.: Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89-A(11), 3166–3174 (2006)
Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars. Ann. Math. Artif. Intell. 47(3-4), 329–395 (2006)
Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2. CUP (1998)
Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008)
Pedersen, M., Plotkin, G.D.: A language for biochemical systems: design and formal specification. T. Comp. Sys. Biology 12, 77–145 (2010)
Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)
Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)
Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: An abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)
Szederényi, G.: Computing sparse and dense realizations of reaction kinetic systems. Journal of Mathematical Chemistry 47, 551–568 (2009)
Szederkényi, G., Hangos, K.M., Péni, T.: Maximal and minimal realizations of reaction kinetic systems: Computation and properties. MATCH Communications in Mathematical and in Computer Chemistry 65(2) (2011), also available as arXiv:1005.2913v1 [q-bio.MN]
Vol’pert, A.I.: Differential equations on graphs. Mathematics of the USSR-Sbornik 17(4), 571–582 (1972)
Wilkinson, D.J.: Stochastic Modelling for System Biology. CRC Press, New York (2006)
Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)
Yang, C.-R., Shapiro, B.E., Mjolsness, E., Hatfield, G.W.: An enzyme mechanism language for the mathematical modeling of metabolic pathways. Bioinformatics 21(6), 774–780 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Plotkin, G.D. (2013). A Calculus of Chemical Systems. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, WC., Fourman, M. (eds) In Search of Elegance in the Theory and Practice of Computation. Lecture Notes in Computer Science, vol 8000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41660-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-41660-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41659-0
Online ISBN: 978-3-642-41660-6
eBook Packages: Computer ScienceComputer Science (R0)