A Calculus of Chemical Systems | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8000))

Abstract

We present the Calculus of Chemical Systems for the modular presentation of systems of chemical equations; it is intended to be a core calculus for rule-based modelling in systems biology. The calculus is loosely modelled after Milner’s Calculus of Communicating Systems, but with communication replaced by chemical reactions. We give a variety of compositional semantics for qualitative and quantitative versions of our calculus, employing a commutative monoid semantical framework. These semantics include (qualitative and quantitative) Petri nets, transition relations, ordinary differential equations (ODEs), and stochastic matrices. Standard semantics of Petri nets, whether of transition relations, ODEs, or stochastic matrices, fit within the framework as commutative monoid homomorphisms. We give complete equational axiomatisations and normal forms for all the semantics, and full abstraction results for the ODE and stochastic semantics. Definability can be characterised in some cases, as was already known for ODEs; other cases, including the stochastic one, remain open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  2. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  4. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210–219 (2007)

    Article  Google Scholar 

  6. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Princeton University Press (1989)

    Google Scholar 

  9. Domijan, M., Kirkilionis, M.: Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media 3(2), 295–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fiore, M.P., Jung, A., Moggi, E., O’Hearn, P., Riecke, J., Rosolini, G., Stark, I.: Domains and denotational semantics: history, accomplishments and open problems. Bulletin of the European Association for Theoretical Computer Science 59, 227–256 (1996)

    Google Scholar 

  11. Garrington, T.P., Johnson, G.L.: Organization and regulation of mitogen-activated protein kinase signaling pathways. Current Opinion in Cell Biology 11, 211–218 (1999)

    Article  Google Scholar 

  12. Groote, J.F., Voorhoeve, M.: Operational semantics for Petri net components. Theor. Comput. Sci. 379(1-2), 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M., Hatvani, L. (eds.) Qualitative Theory of Differential Equations. Coll. Math. Soc. J. Bolyai, vol. 30, pp. 363–379. North-Holland (1981)

    Google Scholar 

  14. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  15. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE 2006(344), re6 (2006)

    Google Scholar 

  17. Hudjaev, S.I., Vol’pert, A.I.: Analysis in classes of discontinuous functions and equations of mathematical physics. Mechanics: Analysis 8 (1985)

    Google Scholar 

  18. Ivanova, A.N.: Conditions for uniqueness of stationary state of kinetic systems related to structural scheme of reactions. Kinet. Katal. 20(4), 1019–1023 (1979)

    MathSciNet  Google Scholar 

  19. Kaltenbach, H.-M., Stelling, J.: Modular analysis of biological networks. In: Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol. 736, Part 1, pp. 3–17. Springer (2012)

    Google Scholar 

  20. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Monographs in Theoretical Computer Science, vol. 1. Springer (1992)

    Google Scholar 

  21. Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1(5), 169–176 (2003)

    Article  Google Scholar 

  22. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

    Article  Google Scholar 

  23. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction maps of bioregulatory networks: A general rubric for systems biology. Mol. Biol. Cell 17, 1–13 (2006)

    Article  Google Scholar 

  24. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

    Google Scholar 

  25. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. CUP (1999)

    Google Scholar 

  26. Matsuno, H., Li, C., Miyano, S.: Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89-A(11), 3166–3174 (2006)

    Article  Google Scholar 

  27. Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars. Ann. Math. Artif. Intell. 47(3-4), 329–395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2. CUP (1998)

    Google Scholar 

  29. Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Pedersen, M., Plotkin, G.D.: A language for biochemical systems: design and formal specification. T. Comp. Sys. Biology 12, 77–145 (2010)

    Google Scholar 

  31. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: An abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Szederényi, G.: Computing sparse and dense realizations of reaction kinetic systems. Journal of Mathematical Chemistry 47, 551–568 (2009)

    Article  Google Scholar 

  35. Szederkényi, G., Hangos, K.M., Péni, T.: Maximal and minimal realizations of reaction kinetic systems: Computation and properties. MATCH Communications in Mathematical and in Computer Chemistry 65(2) (2011), also available as arXiv:1005.2913v1 [q-bio.MN]

    Google Scholar 

  36. Vol’pert, A.I.: Differential equations on graphs. Mathematics of the USSR-Sbornik 17(4), 571–582 (1972)

    Article  Google Scholar 

  37. Wilkinson, D.J.: Stochastic Modelling for System Biology. CRC Press, New York (2006)

    Google Scholar 

  38. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)

    Google Scholar 

  39. Yang, C.-R., Shapiro, B.E., Mjolsness, E., Hatfield, G.W.: An enzyme mechanism language for the mathematical modeling of metabolic pathways. Bioinformatics 21(6), 774–780 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plotkin, G.D. (2013). A Calculus of Chemical Systems. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, WC., Fourman, M. (eds) In Search of Elegance in the Theory and Practice of Computation. Lecture Notes in Computer Science, vol 8000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41660-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41660-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41659-0

  • Online ISBN: 978-3-642-41660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics