Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution | SpringerLink
Skip to main content

Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2013 (IDEAL 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8206))

Abstract

Covariance matrix adaptation evolution strategy (CMA-ES) has demonstrated competitive performance especially on multimodal non-separable problems. However, CMA-ES is not capable of dealing with problems having several hundreds dimensions. Motivated by that cooperative coevolution (CC) has scaled up many kinds of evolutionary algorithms (EAs) to high dimensional optimization problems effectively, we propose an algorithm called CC-CMA-ES which apply CC to CMA-ES in order to scale up CMA-ES to large scale problems. CC-CMA-ES adopts a new sampling scheme which does not divide population into small subpopulations and conducts mutation and crossover operations in subpopulation to generate offspring, but extracts a subspace Gaussian distribution from the global Gaussian distribution for subspace sampling. Also in CC-CMA-ES, two new decomposition strategies are proposed in order to balance exploration and exploitation. Lastly, an adaptive scheme is adopted to self-adapt appropriate decomposition strategy during evolution process. Experimental studies on a series of benchmark functions with different characteristic have been conducted and verified the excellent performance of our newly proposed algorithm and the effectiveness of the new decomposition strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sarker, R., Mohammadian, M., Yao, X.: Evolutionary optimization, vol. 48. Kluwer Academic Pub. (2002)

    Google Scholar 

  2. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 225–239 (2004)

    Article  Google Scholar 

  3. Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  4. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Information Sciences 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  5. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1663–1670. IEEE (2008)

    Google Scholar 

  6. Li, X., Yao, Y.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation 16(2), 1–15 (2011)

    Google Scholar 

  7. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Hansen, N.: The cma evolution strategy: A tutorial. Vu le 29 (2005)

    Google Scholar 

  9. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and space complexity. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 296–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Omidvar, M.N., Li, X.: A comparative study of cma-es on large scale global optimisation. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 303–312. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 2611, pp. 1235–1245 (2001)

    Google Scholar 

  13. Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K., China, H.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene 7, 33 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Tang, K. (2013). Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2013. IDEAL 2013. Lecture Notes in Computer Science, vol 8206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41278-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41278-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41277-6

  • Online ISBN: 978-3-642-41278-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics