Multi-covering Based Rough Set Model | SpringerLink
Skip to main content

Multi-covering Based Rough Set Model

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8170))

Abstract

In this paper, six types of optimistic multi-covering rough set models and six types of pessimistic multi-covering rough set models are proposed in multi-covering approximation space. From three different points of views, relationships among multi-covering rough set models are deeply investigated. They are relationships among optimistic multi-covering rough set models, relationships among pessimistic multi-covering rough set models, and relationships among optimistic and pessimistic multi-covering rough set models. The obtained results provide a theoretical foundation for the further discussions of multi-covering rough sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences, 341–356 (1982)

    Google Scholar 

  2. Samanta, P., Chakraborty, M.K.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 127–134. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Zhu, W., Wang, F.Y.: Properties of the First Type of Covering-Based Rough Sets. In: Proceedings of DM Workshop 2006, ICDM 2006, Hong Kong, China, pp. 407–411 (2006)

    Google Scholar 

  4. Zhu, W.: Properties of the second type of covering-based rough sets. In: Workshop Proceedings of GrC and BI 2006, IEEE WI 2006, Hong Kong, China, pp. 494–497 (2006)

    Google Scholar 

  5. Zhu, W., Wang, F.Y.: On three types of covering rough sets. IEEE Transactions on Knowledge and Data Engineering 19(8), 1131–1144 (2007)

    Article  Google Scholar 

  6. Zhu, W., Wang, F.Y.: A new type of covering rough sets. In: IEEE IS 2006, London, pp. 444–449 (2006)

    Google Scholar 

  7. Zhu, W.: Topological approaches to covering rough sets. Information Science 177(6), 1499–1508 (2007)

    Article  MATH  Google Scholar 

  8. Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Science 179(1), 210–225 (2009)

    Article  MATH  Google Scholar 

  9. Zakowski, W.: Approximations in the space. Demonstration Mathematics, 761–769 (1983)

    Google Scholar 

  10. Pomykala, J.A.: Approximation operations in approximation space. Bulletin of the Polish Academy of Sciences 35(9-10), 653–662 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Tsang, E., Cheng, D., Lee, J., et al.: On the upper approximations of covering generalized rough sets. In: Proceedings of the 3rd International Conference Machine Learning and Cybernetics, pp. 4200–4203 (2004)

    Google Scholar 

  12. Qian, Y.H., Liang, J.Y., Yao, Y.Y., et al.: MGRS: a multi-granulation rough set. Information Science 180(6), 949–970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qian, Y.H., Liang, J.Y., Dang, C.Y.: Incomplete multigranulation rough set. IEEE Transactions on Systems, Man and Cybernetics, Part A 40(2), 420–431 (2010)

    Article  Google Scholar 

  14. Wang, L.J., Yang, X.B., Yang, J.Y., Wu, C.: Relationships among generalized rough sets in six coverings and pure reflexive neighborhood system. Information Science 207, 66–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Yang, X., Wu, C. (2013). Multi-covering Based Rough Set Model. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41218-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41217-2

  • Online ISBN: 978-3-642-41218-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics