Abstract
The taxonomical recognition of microscopic biological particles such as pollen and spores is relevant for medical and aerobiological applications. Focusing on an accurate and automatic vision-based pollen recognition system, we propose a method for classification of pollen apertures based on bag-of-words strategy, with the ability of learning new types from different taxa without the need of new algorithms. Results demonstrate suitable performance and ability to add new taxa.
Chapter PDF
Similar content being viewed by others
References
Erdtman, G.: An Introduction To Pollen Analysis. Chronica Botanica Company, USA (1943)
Hesse, M., Halbritter, H., Weber, M., Buchner, R., Frosch- Radivo, A., Ulrich, S.: Pollen Terminology. In: An Illustrated Handbook, Springer, Austria (2009)
Boucher, A., Hidalgo, P.J., Thonnat, M., Belmonte, J., Galan, C., Bonton, P., Tomczak, R.: Development of a semi-automatic system for pollen recognition. Aerobiologia 18(3), 195–201 (2002)
Chen, C., Hendriks, E.A., Duin, R.P., Reiber, J., Hiemstra, P., De Weger, L., Stoel, B.: Feasibility study on automated recognition of allergenic pollen: grass, birch and mugwort. Aerobiologia 22, 275–284 (2006)
Csurka, G., Dance, C., Bray, C., Fan, L., Willamowski, J.: Visual categorization with bags of keypoints. In: Pattern Recognition and Machine Learning in Computer Vision Workshop, ECCV Grenoble, France, pp. 1–22 (2004)
Wu, J., Tan, W.-C., Rehg, J.M.: Efficient and Effective Visual Codebook Generation Using Additive Kernels. Journal of Machine Learning Research 12, 3097–3118 (2011), Georgia Institute of Technology
López-Sastre, R.J., Tuytelaars, T., Acevedo-Rodríguez, F.J., Maldonado-Bascón, S.: Towards a more discriminative and semantic visual vocabulary. Computer Vision and Image Understanding 115, 415–425 (2011)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)
Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)
Koenderink, J.J., Doorn, A.J.: Representation of local geometry in the visual system. Biological Cybernetics 5(6), 367–375 (1987)
Grauman, K., Darrell, T.: Pyramid matching kernel: Discriminative classification with sets of image features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1458–1465 (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2169–2178 (2006)
Byun, H.-R., Lee, S.-W.: Applications of support vector machines for pattern recognition: A survey. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 213–236. Springer, Heidelberg (2002)
Teague, M.R.: Image analysis via the general theory of moments. Optical Society of America 70(8), 920–930 (1979)
Vorobyov, M.: Shape Classification Using Zernike Moments. Technical Report. iCamp-University of California Irvine (2011)
Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lozano-Vega, G., Benezeth, Y., Marzani, F., Boochs, F. (2013). Classification of Pollen Apertures Using Bag of Words. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41181-6_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-41181-6_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41180-9
Online ISBN: 978-3-642-41181-6
eBook Packages: Computer ScienceComputer Science (R0)