Abstract
This paper presents a new framework to evaluate feature descriptors on 3D datasets. The proposed method employs the approximated overlap error in order to conform with the reference planar evaluation case of the Oxford dataset based on the overlap error. The method takes into account not only the keypoint centre but also the feature shape and it does not require complex data setups, depth maps or an accurate camera calibration. Only a ground-truth fundamental matrix should be computed, so that the dataset can be freely extended by adding further images. The proposed approach is robust to false positives occurring in the evaluation process, which do not introduce any relevant changes in the results, so that the framework can be used unsupervised. Furthermore, the method has no loss in recall, which can be unsuitable for testing descriptors. The proposed evaluation compares on the SIFT and GLOH descriptors, used as references, and the recent state-of-the-art LIOP and MROGH descriptors, so that further insight on their behaviour in 3D scenes is provided as contribution too.
Chapter PDF
Similar content being viewed by others
References
Bellavia, F., Tegolo, D.: New error measures to evaluate features on three-dimensional scenes. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 524–533. Springer, Heidelberg (2011)
Bellavia, F., Tegolo, D., Valenti, C.: Improving Harris corner selection strategy. IET Computer Vision 5(2) (2011)
Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 43–57 (2011)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Fan, B., Wu, F., Hu, Z.: Rotationally invariant descriptors using intensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(10), 2031–2045 (2012)
Forssén, P., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: International Conference on Computer Vision. IEEE Computer Society Press (2007)
Fraundorfer, F., Bischof, H.: A novel performance evaluation method of local detectors on non-planar scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, p. 33. IEEE Computer Society Press (2005)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vision 94(3), 335–360 (2011)
Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications (MVA) 21(6), 905–920 (2010)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178. IEEE Computer Society Press (2006)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)
Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. In: International Conference on Pattern Recognition (2012)
Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73, 263–284 (2007)
Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)
Strecha, C., von Hansen, W., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Computer Vision and Pattern Recognition (2008)
Szeliski, R.: Computer Vision: Algorithms and Applications. Springer (2010)
Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision, pp. 603–610 (2011)
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, Springer, Heidelberg (1994)
Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bellavia, F., Valenti, C., Lupascu, C.A., Tegolo, D. (2013). Approximated Overlap Error for the Evaluation of Feature Descriptors on 3D Scenes. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41181-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-41181-6_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41180-9
Online ISBN: 978-3-642-41181-6
eBook Packages: Computer ScienceComputer Science (R0)