Abstract
Hierarchical image segmentation provides a set of image segmentations at different detail levels in which coaser details levels can be produced by simple merges of regions from segmentations at finer detail levels. Most image segmentation algorithms, such as region merging algorithms, rely on a criterion for merging that does not lead to a hierarchy. In addition, for image segmentation, the tuning of the parameters can be difficult. In this work, we propose a hierarchical graph-based image segmentation relying on a statistical region merging. Furthermore, we study how the inclusion of hierarchical property have influenced the computation of quality measures in the original method. Quantitative and qualitative assessments of the method on two image databases show efficiency and ease of use of our method.
The authors are grateful to PUC Minas – Pontifícia Universidade Católica de Minas Gerais, CNPq, CAPES and FAPEMIG for the financial support of this work.
Chapter PDF
Similar content being viewed by others
References
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2007)
Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33, 898–916 (2011)
Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004), http://portal.acm.org/citation.cfm?id=981793.981796
Guigues, L., Cocquerez, J.P., Men, H.L.: Scale-sets image analysis. IJCV 68(3), 289–317 (2006), http://dx.doi.org/10.1007/s11263-005-6299-0
Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: An efficient hierarchical graph based image segmentation. CoRR abs/1206.2807 (2012)
Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)
Haxhimusa, Y., Kropatsch, W.: Segmentation graph hierarchies. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)
Morris, O., Lee, M.J., Constantinides, A.: Graph theory for image analysis: an approach based on the shortest spanning tree. Communications, Radar and Signal Processing IEE Proceedings F 133(2), 146–152 (1986)
Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. JMIV 40, 231–247 (2011)
Nock, R., Nielsen, F.: Statistical region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1452–1458 (2004)
Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20, 68–86 (1971), http://dx.doi.org/10.1109/T-C.1971.223083
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guimarães, S.J.F., Patrocínio, Z.K.G. (2013). A Graph-Based Hierarchical Image Segmentation Method Based on a Statistical Merging Predicate. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41181-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-41181-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41180-9
Online ISBN: 978-3-642-41181-6
eBook Packages: Computer ScienceComputer Science (R0)