Abstract
In this paper we present a new adaptive zoning technique based on Voronoi tessellation for the task of handwritten digit recognition. This technique extracts features according to an optimal zoning distribution, obtained by an evolutionary-strategy based search. Several experiments have been conducted on the MNIST and the USPS datasets to investigate the proposed approach. Comparisons with regular square zoning reveal that the presented zoning strategy achieves better results for any type of SVM classifier. Furthermore, the proposed zoning method shows that the combination of the adaptive zoning strategy with the Voronoi topology leads to find a distribution of zones able to improve accuracy significantly. As a matter of fact reached accuracies are close to the best algorithms.
Chapter PDF
Similar content being viewed by others
References
Beyer, H.-G.: The Theory of Evolution Strategy. Springer, New York (2001)
Bromley, J., Sackinger, E.: Neural-network and k-nearest-neighbor-classifiers. TechnicalReport 11359-910819-16TM, ATT (1991)
Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2008)
Drucker, H., Schapire, R., Simard, P.: Boosting performance in neural networks. International Journalof Pattern Recognition and Artificial Intelligence 7, 705–719 (1993)
Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3–14 (1994)
Freitas, C.O.A., Oliveira, L.S., Bortolozzi, F.: Handwritten Character Recognition using nonsymmetrical perceptual zoning. IJPRAI 21(1), 1–21 (2007)
Gatos, B., Kesidis, A., Papandreou, A.: Adaptive Zoning Features for Character and Word Recognition. In: Proceedings of ICDAR 2011, pp. 1160–1164 (2011)
Hull, J.: A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 550–554 (1994)
Impedovo, D., Pirlo, G., Modugno, R.: New Advancements in Zoning-Based Recognition of Handwritten Characters. In: Proceedings of ICFHR 2012, pp. 661–665 (2012)
Impedovo, S., Modugno, R., Pirlo, G.: Analysis of membership Functions for Voronoi-based Classification. In: Proceedings of ICFHR 2010, pp. 220–225 (2010)
Impedovo, S., Modugno, R., Pirlo, G.: Membership Functions for Zoning-based Recognition of Handwritten Digits. In: Proc. International Conference on Pattern Recognition, Istanbul, Turkey, pp. 1879–1879 (2010)
LeCun, Y., et al.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, pp. 2278–2324 (1998)
Liu, C.-L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recognition 36, 2271–2285 (2003)
Niu, X.X., Suen, C.Y.: A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognition 45, 1318–1325 (2012)
Oliveira, L.S., Sabourin, R., Bartolozzi, F., Suen, C.Y.: Automatic Recognition of Handwritten Numeral Strings: A Recognition and Verification Strategy. IEEE T-PAMI 24(11), 1438–1454 (2002)
Radtke, P.V.W., Wong, T., Sabourin, R.: A Multi-objective Memetic Algorithm for Intelligent Feature Extraction. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 767–781. Springer, Heidelberg (2005)
Rajashekararadhya, S.V., Ranjan, P.V.: Support Vector Machine based Handwritten Numeral Recognition of Kannada Script. In: Proc. IEEE International Conference on Advance Computing 2009, pp. 381–386 (2009)
Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/
Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)
Sharma, D., Gupta, D.: Isolated Handwritten Digit Recognition using Adaptive Unsupervised Incremental Learning Technique. International Journal of Computer Applications 7(4), 27–33 (2010)
Simard, P., LeCun, Y., Denker, J.S.: Efficient pattern recognition using a new transformation distance. In: Advances in Neural Information Processing Systems 5, San Francisco, CA, USA, pp. 50–58 (1993)
Vamvakas, G., Gatos, B., Pratikakis, I., Stamatopoulos, N., Roniotis, A., Perantonis, S.J.: Hybrid off-line OCR for isolated handwritten Greek characters. In: Proc. 4th IASTED International Conference on Signal Processing, Pattern Recognition, and Applications (SPPRA 2007), Innsbruck, Austria, pp. 197–202 (2007)
Xiang, P., Xiuzi, Y., Sanyuan, Z.: A hybrid method for robust car plate character recognition. Engineering Applications of Artificial Intelligence 18(8), 963–972 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Impedovo, S., Mangini, F.M., Pirlo, G. (2013). A New Adaptive Zoning Technique for Handwritten Digit Recognition. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41181-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-41181-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41180-9
Online ISBN: 978-3-642-41181-6
eBook Packages: Computer ScienceComputer Science (R0)