A Classification-Enhanced Vote Accumulation Scheme for Detecting Colonic Polyps | SpringerLink
Skip to main content

A Classification-Enhanced Vote Accumulation Scheme for Detecting Colonic Polyps

  • Conference paper
Abdominal Imaging. Computation and Clinical Applications (ABD-MICCAI 2013)

Abstract

Colorectal cancer most often begins as abnormal growth of the colon wall, commonly referred to as polyps. It has been shown that the timely removal of polyps with optical colonoscopy (OC) significantly reduces the incidence and mortality of colorectal cancer. However, a significant number of polyps are missed during OC in clinical practice—the pooled miss-rate for all polyps is 22% (95% CI, 19%–26%). Computer-aided detection may offer promises of reducing polyp miss-rate. This paper proposes a new automatic polyp detection method. Given a colonoscopy image, the main idea is to identify the edge pixels that lie on the boundary of polyps and then determine the location of a polyp from the identified edges. To do so, we first use the Canny edge detector to form a crude set of edge pixels, and then apply a set of boundary classifiers to remove a large portion of irrelevant edges. The polyp locations are then determined by a novel vote accumulation scheme that operates on the positively classified edge pixels. We evaluate our method on 300 images from a publicly available database and obtain results superior to the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 63(1), 11–30 (2013)

    Article  Google Scholar 

  2. Rabeneck, L., El-Serag, H., Davila, J., Sandler, R.: Outcomes of colorectal cancer in the united states: no change in survival (1986-1997). The American Journal of Gastroenterology 98(2), 471 (2003)

    Google Scholar 

  3. Winawer, S.J., Zauber, A.G., Ho, M.N., et al.: Prevention of colorectal cancer by colonoscopic polypectomy. New England Journal of Medicine 329(27), 1977–1981 (1993)

    Article  Google Scholar 

  4. Heresbach, D., Barrioz, T., Lapalus, M.G., Coumaros, D., et al.: Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. Endoscopy 40(4), 284–290 (2008)

    Article  Google Scholar 

  5. van Rijn, J., Reitsma, J., Stoker, J., Bossuyt, P., van Deventer, S., Dekker, E.: Polyp miss rate determined by tandem colonoscopy: a systematic review. American Journal of Gastroenterology 101(2), 343–350 (2006)

    Article  Google Scholar 

  6. Bressler, B., Paszat, L.F., Chen, Z., Rothwell, D.M., Vinden, C., Rabeneck, L.: Rates of new or missed colorectal cancers after colonoscopy and their risk factors: A population-based analysis. Gastroenterology 132(1), 96–102 (2007), http://www.sciencedirect.com/science/article/pii/S001650850602261X

    Article  Google Scholar 

  7. Hewett, D.G., Kahi, C.J., Rex, D.K.: Does colonoscopy work? Journal of the National Comprehensive Cancer Network 8(1), 67–77 (2010)

    Google Scholar 

  8. CVC-Databasecolon: A database for assessment of polyp detection (2011), http://mv.cvc.uab.es/projects/colon-qa/cvccolondb

  9. Karkanis, S., Iakovidis, D., Maroulis, D., Karras, D., Tzivras, M.: Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine 7(3), 141–152 (2003)

    Article  Google Scholar 

  10. Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K., A-Rahim, Y.: A colon video analysis framework for polyp detection. IEEE Transactions on Biomedical Engineering 59(5), 1408–1418 (2012)

    Article  Google Scholar 

  11. Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Computers in Biology and Medicine 36(10), 1084–1103 (2006)

    Article  Google Scholar 

  12. Hwang, S., Oh, J., Tavanapong, W., Wong, J., de Groen, P.: Polyp detection in colonoscopy video using elliptical shape feature. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 2, pp. II-465–II-468 (2007)

    Google Scholar 

  13. Bernal, J., Sánchez, J., Vilariño, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognition 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  14. Mordohai, P., Medioni, G.: Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning. Synthesis Lectures on Image, Video, and Multimedia Processing. Morgan & Claypool Publishers (2007), http://books.google.com/books?id=uvwxw5sJKywC

  15. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  16. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tajbakhsh, N., Gurudu, S.R., Liang, J. (2013). A Classification-Enhanced Vote Accumulation Scheme for Detecting Colonic Polyps. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41083-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41082-6

  • Online ISBN: 978-3-642-41083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics