Abstract
dceMRI is becoming a key modality for tumour characterisation and monitoring of response to therapy, because of the ability to identify the underlying tumour physiology. Pharmacokinetic (PK) models relate the contrast enhancement seen in dceMRI to physiological parameters but require accurate measurement of the AIF, the time-dependant contrast concentration in blood plasma. In this study, a novel method is introduced that overcomes the challenges of direct AIF measurement, by automatically estimating the AIF from the tumour tissue. This approach was evaluated on synthetic data (10% noise) and achieved a relative error in K trans and k ep of 11.8 ±3.5% and 25.7 ±4.7 %, respectively, compared to 41 ±15 % and 60 ±32 % using a population model. The method improved the fit of the PK model to clinical colorectal cancer cases, was stable for independent regions in the tumour, and showed improved localisation of the PK parameters. This demonstrates that personalised AIF estimation can lead to more accurate PK modelling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. Magn. Reson. Imaging 14, 457–463 (2001)
Parker, G., Roberts, C., Macdonald, A., Buonaccorsi, G., Cheung, S., Buckley, D., Jackson, A., Watson, Y., Davies, K., Jayson, G.: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reson. Med. 56, 993–1000 (2006)
Enescu, M., Bhushan, M., Hill, E.J., Franklin, J., Anderson, E.M., Sharma, R.A., Schnabel, J.A.: pCT derived arterial input function for improved pharmacokinetic analysis of longitudinal dceMRI for colorectal cancer. In: SPIE, p. 86690 (2013)
Orton, M.R., D’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008)
Liberman, G., Louzoun, Y., Colliot, O., Ben Bashat, D.: T 1 Aapping, AIF and Pharmacokinetic Parameter Extraction from Dynamic Contrast Enhancement MRI Data. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 76–83. Springer, Heidelberg (2011)
Fluckiger, J.U., Schabel, M.C., DiBella, E.V.R.: Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn. Reson. Med. 62, 1477–1486 (2009)
Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.Y., Mayr, N.A., et al.: Parker: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. Magn. Reson. Imaging 10, 223–232 (1999)
Bradley, D.P., Tessier, J.L., Checkley, D., Kuribayashi, H., Waterton, J.C., Kendrew, J., Wedge, S.R.: Effects of AZD2171 and vandetanib (ZD6474, Zactima) on haemodynamic variables in an SW620 human colon tumour model: an investigation using dynamic contrast-enhanced MRI and the rapid clearance blood pool contrast agent, vol. 20, pp. 42–52 (2008)
Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Irving, B. et al. (2013). Personalised Estimation of the Arterial Input Function for Improved Pharmacokinetic Modelling of Colorectal Cancer Using dceMRI. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-41083-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41082-6
Online ISBN: 978-3-642-41083-3
eBook Packages: Computer ScienceComputer Science (R0)