A State Space Approach and Hurst Exponent for Ensemble Predictors | SpringerLink
Skip to main content

A State Space Approach and Hurst Exponent for Ensemble Predictors

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 383))

  • 1779 Accesses

Abstract

In this article we propose a concept of ensemble methods based on deconvolution with state space and MLP neural network approach. Having a few prediction models we treat their results as a multivariate variable with latent components having destructive or constructive impact on prediction. The latent component classification is performed using novel variability measure derived from Hurst exponent. The validity of our concept is presented on the real problem of load forecasting in the Polish power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabasi, A.-L., Vicsek, T.: Multifractality of self-affine fractals. Physical Review A44, 2730–2733 (1991)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bussgang, J.J.: Cross-correlation function of amplitude-distorted Gaussian signals, MIT Research Laboratory of Electronics, Technical Report 216 (1952)

    Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Hoeting, J., Mdigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)

    Book  Google Scholar 

  7. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116, 770–799 (1951)

    Google Scholar 

  8. Peters, E.: Fractal market analysis. John Wiley, Chichester (1996)

    Google Scholar 

  9. Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, New York (1994)

    Google Scholar 

  10. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Smooth Component Analysis as Ensemble Method for Prediction Improvement. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 277–284. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Noise detection for ensemble methods. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 471–478. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Weron, R., Bierbrauer, M., Trück, S.: Modeling electricity prices: jump diffusion and regime switching. Physica A 336, 39 (2004)

    Article  Google Scholar 

  13. Zhang, L., Cichocki, A.: Blind Separation of Filtered Source Using State-Space Approach. In: Advances in Neural Information Processing Systems, vol. 11, pp. 648–654 (1999)

    Google Scholar 

  14. Zhang, L., Cichocki, A.: Blind Deconvolution of Dynamical Systems: A State Space Approach. Journal of Signal Processing 4(2), 111–113 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Ząbkowski, T. (2013). A State Space Approach and Hurst Exponent for Ensemble Predictors. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41013-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41012-3

  • Online ISBN: 978-3-642-41013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics