Agent-Based Multimodal Transport Planning in Dynamic Environments | SpringerLink
Skip to main content

Agent-Based Multimodal Transport Planning in Dynamic Environments

  • Conference paper
KI 2013: Advances in Artificial Intelligence (KI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8077))

Included in the following conference series:

  • 1617 Accesses

Abstract

The development and maintenance of traffic concepts in urban districts is expensive and leads to high investments for altering transport infrastructures or for the acquisition of new resources. We present an agent-based approach for modeling, simulation, evaluation, and optimization of public transport systems by introducing a dynamic microscopic model. Actors of varying stakeholders are represented by intelligent agents. While describing the inter-agent communication and their individual behaviors, the focus is on the implementation of information systems for traveler agents as well as on the matching between open source geographic information systems, and standardized transport schedules provided by the Association of German Transport Companies. The performance, efficiency, and limitations of the system are evaluated within the public transport infrastructure of Bremen. We discuss the effects of passengers’ behaviors to the entire transport network and investigate the system’s flexibility as well as consequences of incidents in travel plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bremer Straßenbahn AG: Blickpunkte. Geschäftsbericht 2011 (2012)

    Google Scholar 

  2. Buehler, R.: Determinants of transport mode choice: a comparison of Germany and the USA. Journal of Transport Geography 19(4), 644–657 (2011)

    Article  Google Scholar 

  3. Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. (BITKOM): Auch Ältere steigen auf Smartphones um. 40 Prozent aller Deutschen haben ein Smartphone (2013)

    Google Scholar 

  4. Collins, C.M., Chambers, S.M.: Psychological and situational influences on commuter-transport-mode choice. Env. and Beh. 37(5), 640–661 (2005)

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Divall, C., Schmucki, B.: Introduction: Technology (sub)urban development and the social construction of urban transport. In: Suburbanizing The Masses. Public Transport and Urban Development in Historical Perspective. Ashgate (2003)

    Google Scholar 

  7. de Donnea, F.: Consumer behaviour, transport mode choice and value of time: Some micro-economic models. Regional and Urban Economics 1(4), 55–382 (1972)

    Article  Google Scholar 

  8. Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O., Sitharam, T.: Enhanced shortest path computation for multiagent-based intermodal transport planning in dynamic environments. In: ICAART (2), pp. 324–329 (2013)

    Google Scholar 

  9. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University Press (1997)

    Google Scholar 

  10. Klügl, F., Rindsfüser, G.: Agent-based route (and mode) choice simulation in real-world networks. In: WI-IAT, vol. 2, pp. 22–29 (2011)

    Google Scholar 

  11. Meignan, D., Simonin, O., Koukam, A.: Multiagent approach for simulation and evaluation of urban bus networks. In: AAMAS, pp. 50–56 (2006)

    Google Scholar 

  12. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable information: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  14. van Nes, R., Hamerslag, R., Immers, B.H.: Design of public transport networks. Transportation Research Record 1202, 74–83 (1988)

    Google Scholar 

  15. Tardelli, A.O., Anção, M.S., Packer, A.L., Sigulem, D.: An implementation of the trigram phrase matching method for text similarity problems. In: Bos, L., Laxminarayan, S., Marsh, A. (eds.) Medical and Care Compunetics 1, 1st edn., vol. 103. IOS Press (2004)

    Google Scholar 

  16. Verband Deutscher Verkehrsunternehmen: ÖPNV-Datenmodell 5.0. “Schnittstellen-Initiative”. VDV Standardschnittstelle. Liniennetz/Fahrplan. Version: 1.4 (2008)

    Google Scholar 

  17. Yang, Y., Wang, S., Hu, X., Li, J., Xu, B.: A modified k-shortest paths algorithm for solving the earliest arrival problem on the time-dependent model of transportation systems. In: International MultiConference of Engineers and Computer Scientists, pp. 1562–1567 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greulich, C., Edelkamp, S., Gath, M. (2013). Agent-Based Multimodal Transport Planning in Dynamic Environments. In: Timm, I.J., Thimm, M. (eds) KI 2013: Advances in Artificial Intelligence. KI 2013. Lecture Notes in Computer Science(), vol 8077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40942-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40942-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40941-7

  • Online ISBN: 978-3-642-40942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics