Abstract
The development and maintenance of traffic concepts in urban districts is expensive and leads to high investments for altering transport infrastructures or for the acquisition of new resources. We present an agent-based approach for modeling, simulation, evaluation, and optimization of public transport systems by introducing a dynamic microscopic model. Actors of varying stakeholders are represented by intelligent agents. While describing the inter-agent communication and their individual behaviors, the focus is on the implementation of information systems for traveler agents as well as on the matching between open source geographic information systems, and standardized transport schedules provided by the Association of German Transport Companies. The performance, efficiency, and limitations of the system are evaluated within the public transport infrastructure of Bremen. We discuss the effects of passengers’ behaviors to the entire transport network and investigate the system’s flexibility as well as consequences of incidents in travel plans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bremer Straßenbahn AG: Blickpunkte. Geschäftsbericht 2011 (2012)
Buehler, R.: Determinants of transport mode choice: a comparison of Germany and the USA. Journal of Transport Geography 19(4), 644–657 (2011)
Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. (BITKOM): Auch Ältere steigen auf Smartphones um. 40 Prozent aller Deutschen haben ein Smartphone (2013)
Collins, C.M., Chambers, S.M.: Psychological and situational influences on commuter-transport-mode choice. Env. and Beh. 37(5), 640–661 (2005)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Divall, C., Schmucki, B.: Introduction: Technology (sub)urban development and the social construction of urban transport. In: Suburbanizing The Masses. Public Transport and Urban Development in Historical Perspective. Ashgate (2003)
de Donnea, F.: Consumer behaviour, transport mode choice and value of time: Some micro-economic models. Regional and Urban Economics 1(4), 55–382 (1972)
Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O., Sitharam, T.: Enhanced shortest path computation for multiagent-based intermodal transport planning in dynamic environments. In: ICAART (2), pp. 324–329 (2013)
Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University Press (1997)
Klügl, F., Rindsfüser, G.: Agent-based route (and mode) choice simulation in real-world networks. In: WI-IAT, vol. 2, pp. 22–29 (2011)
Meignan, D., Simonin, O., Koukam, A.: Multiagent approach for simulation and evaluation of urban bus networks. In: AAMAS, pp. 50–56 (2006)
Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable information: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)
van Nes, R., Hamerslag, R., Immers, B.H.: Design of public transport networks. Transportation Research Record 1202, 74–83 (1988)
Tardelli, A.O., Anção, M.S., Packer, A.L., Sigulem, D.: An implementation of the trigram phrase matching method for text similarity problems. In: Bos, L., Laxminarayan, S., Marsh, A. (eds.) Medical and Care Compunetics 1, 1st edn., vol. 103. IOS Press (2004)
Verband Deutscher Verkehrsunternehmen: ÖPNV-Datenmodell 5.0. “Schnittstellen-Initiative”. VDV Standardschnittstelle. Liniennetz/Fahrplan. Version: 1.4 (2008)
Yang, Y., Wang, S., Hu, X., Li, J., Xu, B.: A modified k-shortest paths algorithm for solving the earliest arrival problem on the time-dependent model of transportation systems. In: International MultiConference of Engineers and Computer Scientists, pp. 1562–1567 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Greulich, C., Edelkamp, S., Gath, M. (2013). Agent-Based Multimodal Transport Planning in Dynamic Environments. In: Timm, I.J., Thimm, M. (eds) KI 2013: Advances in Artificial Intelligence. KI 2013. Lecture Notes in Computer Science(), vol 8077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40942-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-40942-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40941-7
Online ISBN: 978-3-642-40942-4
eBook Packages: Computer ScienceComputer Science (R0)