Human Activity Recognition and Feature Selection for Stroke Early Diagnosis | SpringerLink
Skip to main content

Human Activity Recognition and Feature Selection for Stroke Early Diagnosis

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8073))

Included in the following conference series:

Abstract

Human Activity Recognition (HAR) refers to the techniques for detecting what a subject is currently doing. A wide variety of techniques have been designed and applied in ambient intelligence -related with comfort issues in home automation- and in Ambient Assisted Living (AAL) -related with the health care of elderly people. In this study, we focus on the diagnosing of an illness that requires estimating the activity of the subject. In a previous study, we adapted a well-known HAR technique to use accelerometers in the dominant wrist. This study goes one step further, firstly analyzing the different variables that have been reported in HAR, then evaluating those of higher relevance and finally performing a wrapper feature selection method. The main contribution of this study is the best adaptation of the chosen technique for estimating the current activity of the individual. The obtained results are expected to be included in a specific device for early stroke diagnosing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, H.P., del Zoppo, G., Alberts, M.J., Bhatt, D.L., Brass, L., Furlan, A., Grubb, R.L., Higashida, R.T., Jauch, E.C., Kidwell, C., Lyden, P.D., Morgenstern, L.B., Qureshi, A.I., Rosenwasser, R.H., Scott, P.A., Wijdicks, E.F.: Guidelines for the early management of adults with ischemic stroke. Stroke 38, 1655–1711 (2007)

    Article  Google Scholar 

  2. Adams, R.D.: Principles of Neurology, 6th edn. McGraw Hill (1997)

    Google Scholar 

  3. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiological Measurement 27, 935–951 (2006)

    Article  Google Scholar 

  4. Álvarez-Álvarez, A., Triviño, G., Cordón, O.: Body posture recognition by means of a genetic fuzzy finite state machine. In: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems, GEFS, pp. 60–65 (2011)

    Google Scholar 

  5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Casillas, J., Cordón, O., del Jesus, M., Herrera, F.: Genetic feature selection in a fuzzy rule-based classification system learning process. Information Sciences 136(1-4), 135–157 (2001)

    Article  MATH  Google Scholar 

  7. Chen, Y.P., Yang, J.Y., Liou, S.N., Lee, G.Y., Wang, J.S.: Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation 205(2), 849–860 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dromerick, A., Khader, S.A.: Medical complications during stroke rehabilitation. Advances in Neurology 92, 409–413 (2003)

    Google Scholar 

  9. Duarte, E., Alonso, B., Fernández, M., Fernández, J., Flórez, M., García-Montes, I., Gentil, J., Hernández, L., Juan, F., Palomino, J., Vidal, J., Viosca, E., Aguilar, J., Bernabeu, M., Bori, I., Carrión, F., Déniz, A., Díaz, I., Fernández, E., Forastero, P., Iñigo, V., Junyent, J., Lizarraga, N., de Munaín, L.L., Máñez, I., Miguéns, X., Sánchez, I., Soler, A.: Stroke rehabilitation: Care model. Rehabilitación 44(1), 60–68 (2010)

    Article  Google Scholar 

  10. González, S., Villar, J.R., Sedano, J., Chira, C.: A preliminary study on early diagnosis of illnesses based on activity disturbances. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217, pp. 521–527. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Győrbiro, N., Fábián, Á., Hományi, G.: An activity recognition system for mobile phones. Mobile Networks and Applications 14, 82–91 (2009)

    Article  Google Scholar 

  12. Hogdson, C.: To fast or not to fast. Stroke 38, 2631–2632 (2007)

    Article  Google Scholar 

  13. Hollands, K.: Whole body coordination during turning while walking in stroke survivors. Ph.D. thesis, School of Health and Population Sciences. Ph.D. thesis, University of Birmingham (2010)

    Google Scholar 

  14. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter 12(2), 74–82 (2010)

    Article  Google Scholar 

  15. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. Journal of Bone and Joint Surgery 46(2), 335–360 (1964)

    Google Scholar 

  16. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Learning 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  17. Villar, J.R., González, S., Sedano, J., Corchado, E., Puigpinós, L., de Ciurana, J.: Meta-heuristic improvements applied for steel sheet incremental cold shaping. Memetic Computing 4(4), 249–261 (2012)

    Article  Google Scholar 

  18. Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human activity recognition with user-free accelerometers in the sensor networks. In: Proceedings of the International Conference on Neural Networks and Brain, ICNN&B 2005, vol. 2, pp. 1212–1217. IEEE Conference Publications (2005)

    Google Scholar 

  19. Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural networks. Pattern Recognition Letters 29, 2213–2220 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.M. (2013). Human Activity Recognition and Feature Selection for Stroke Early Diagnosis. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40846-5_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40845-8

  • Online ISBN: 978-3-642-40846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics