Abstract
Human Activity Recognition (HAR) refers to the techniques for detecting what a subject is currently doing. A wide variety of techniques have been designed and applied in ambient intelligence -related with comfort issues in home automation- and in Ambient Assisted Living (AAL) -related with the health care of elderly people. In this study, we focus on the diagnosing of an illness that requires estimating the activity of the subject. In a previous study, we adapted a well-known HAR technique to use accelerometers in the dominant wrist. This study goes one step further, firstly analyzing the different variables that have been reported in HAR, then evaluating those of higher relevance and finally performing a wrapper feature selection method. The main contribution of this study is the best adaptation of the chosen technique for estimating the current activity of the individual. The obtained results are expected to be included in a specific device for early stroke diagnosing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, H.P., del Zoppo, G., Alberts, M.J., Bhatt, D.L., Brass, L., Furlan, A., Grubb, R.L., Higashida, R.T., Jauch, E.C., Kidwell, C., Lyden, P.D., Morgenstern, L.B., Qureshi, A.I., Rosenwasser, R.H., Scott, P.A., Wijdicks, E.F.: Guidelines for the early management of adults with ischemic stroke. Stroke 38, 1655–1711 (2007)
Adams, R.D.: Principles of Neurology, 6th edn. McGraw Hill (1997)
Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiological Measurement 27, 935–951 (2006)
Álvarez-Álvarez, A., Triviño, G., Cordón, O.: Body posture recognition by means of a genetic fuzzy finite state machine. In: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems, GEFS, pp. 60–65 (2011)
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Casillas, J., Cordón, O., del Jesus, M., Herrera, F.: Genetic feature selection in a fuzzy rule-based classification system learning process. Information Sciences 136(1-4), 135–157 (2001)
Chen, Y.P., Yang, J.Y., Liou, S.N., Lee, G.Y., Wang, J.S.: Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation 205(2), 849–860 (2008)
Dromerick, A., Khader, S.A.: Medical complications during stroke rehabilitation. Advances in Neurology 92, 409–413 (2003)
Duarte, E., Alonso, B., Fernández, M., Fernández, J., Flórez, M., García-Montes, I., Gentil, J., Hernández, L., Juan, F., Palomino, J., Vidal, J., Viosca, E., Aguilar, J., Bernabeu, M., Bori, I., Carrión, F., Déniz, A., Díaz, I., Fernández, E., Forastero, P., Iñigo, V., Junyent, J., Lizarraga, N., de Munaín, L.L., Máñez, I., Miguéns, X., Sánchez, I., Soler, A.: Stroke rehabilitation: Care model. Rehabilitación 44(1), 60–68 (2010)
González, S., Villar, J.R., Sedano, J., Chira, C.: A preliminary study on early diagnosis of illnesses based on activity disturbances. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217, pp. 521–527. Springer, Heidelberg (2013)
Győrbiro, N., Fábián, Á., Hományi, G.: An activity recognition system for mobile phones. Mobile Networks and Applications 14, 82–91 (2009)
Hogdson, C.: To fast or not to fast. Stroke 38, 2631–2632 (2007)
Hollands, K.: Whole body coordination during turning while walking in stroke survivors. Ph.D. thesis, School of Health and Population Sciences. Ph.D. thesis, University of Birmingham (2010)
Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter 12(2), 74–82 (2010)
Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. Journal of Bone and Joint Surgery 46(2), 335–360 (1964)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Learning 27(8), 1226–1238 (2005)
Villar, J.R., González, S., Sedano, J., Corchado, E., Puigpinós, L., de Ciurana, J.: Meta-heuristic improvements applied for steel sheet incremental cold shaping. Memetic Computing 4(4), 249–261 (2012)
Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human activity recognition with user-free accelerometers in the sensor networks. In: Proceedings of the International Conference on Neural Networks and Brain, ICNN&B 2005, vol. 2, pp. 1212–1217. IEEE Conference Publications (2005)
Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural networks. Pattern Recognition Letters 29, 2213–2220 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.M. (2013). Human Activity Recognition and Feature Selection for Stroke Early Diagnosis. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-40846-5_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40845-8
Online ISBN: 978-3-642-40846-5
eBook Packages: Computer ScienceComputer Science (R0)