Abstract
Segmentation of three-dimensional (3D) transesophageal ultrasound (TEE) is highly desired for intervention monitoring and guidance, but it is still a challenging image processing task due to complex local anatomy, limited field of view and typical ultrasound artifacts. We propose to use a multi-cavity active shape model (ASM) derived from Computed Tomography Angiography (CTA) segmentations in conjunction with a blood/tissue classification by Gamma Mixture Models to identify and segment the individual cavities simultaneously. A scheme that utilized successively ASMs of the whole heart and the individual cavities was used to segment the entire heart. We successfully validated our segmentation scheme with manually outlined contours and with CTA segmentations for three patients. The segmentations of the three patients had an average distance of 2.3, 4.9, and 2.1 mm to the manual outlines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schneider, R.J., Tenenholtz, N.A., Perrin, D.P., Marx, G.R., del Nido, P.J., Howe, R.D.: Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 520–527. Springer, Heidelberg (2011)
Burlina, P., Mukherjee, R., Juang, R., Sprouse, C.: Recovering endocardial walls from 3D TEE. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 284–293. Springer, Heidelberg (2011)
Metz, C., Baka, N., Kirisli, H., Schaap, M., Klein, S., Neefjes, L., Mollet, N., Lelieveldt, B., de Bruijne, M., Niessen, W., van Walsum, T.: Regression-based cardiac motion prediction from single-phase cta. IEEE Trans. Med. Imag. 31(6), 1311–1325 (2012)
Cootes, T., Cooper, D., Taylor, C., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Und. 61(1), 38–59 (1995)
Vegas-Sánchez-Ferrero, G., Tristán-Vega, A., Aja-Fernández, S., Martín-Fernández, M., Palencia, C., Deriche, R.: Anisotropic LMMSE denoising of MRI based on statistical tissue models. In: ISBI, pp. 1519–1522 (2012)
van Ginneken, B., Frangi, A., Staal, J., ter Haar Romeny, B., Viergever, M.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imag. 21(8), 924–933 (2002)
Vegas-Sánchez-Ferrero, G., Martín-Martinez, D., Aja-Fernández, S., Palencia, C.: On the influence of interpolation on probabilistic models for ultrasonic images. In: ISBI, pp. 292–295 (2010)
Nillesen, M., Lopata, R., Gerrits, I., Kapusta, L., Thijssen, J., de Korte, C.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound Med. Biol. 34(4), 674–680 (2008)
Moon, T.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(5), 698–700 (1987)
Kirişli, H., Schaap, M., Klein, S., Papadopoulou, S., Bonardi, M., Chen, C., Weustink, A., Mollet, N., Vonken, E.P.A., van der Geest, R., van Walsum, T., Niessen, W.: Evaluation of a multi-atlas based method for segmentation of cardiac cta data: A large-scale, multi-center and multi-vendor study. Medical Physics 37(12), 6279–6292 (2010)
Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haak, A. et al. (2013). Segmentation of 3D Transesophageal Echocardiograms by Multi-cavity Active Shape Model and Gamma Mixture Model. In: Liao, H., Linte, C.A., Masamune, K., Peters, T.M., Zheng, G. (eds) Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions. MIAR AE-CAI 2013 2013. Lecture Notes in Computer Science, vol 8090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40843-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-40843-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40842-7
Online ISBN: 978-3-642-40843-4
eBook Packages: Computer ScienceComputer Science (R0)