Segmentation of 3D Transesophageal Echocardiograms by Multi-cavity Active Shape Model and Gamma Mixture Model | SpringerLink
Skip to main content

Segmentation of 3D Transesophageal Echocardiograms by Multi-cavity Active Shape Model and Gamma Mixture Model

  • Conference paper
Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions (MIAR 2013, AE-CAI 2013)

Abstract

Segmentation of three-dimensional (3D) transesophageal ultrasound (TEE) is highly desired for intervention monitoring and guidance, but it is still a challenging image processing task due to complex local anatomy, limited field of view and typical ultrasound artifacts. We propose to use a multi-cavity active shape model (ASM) derived from Computed Tomography Angiography (CTA) segmentations in conjunction with a blood/tissue classification by Gamma Mixture Models to identify and segment the individual cavities simultaneously. A scheme that utilized successively ASMs of the whole heart and the individual cavities was used to segment the entire heart. We successfully validated our segmentation scheme with manually outlined contours and with CTA segmentations for three patients. The segmentations of the three patients had an average distance of 2.3, 4.9, and 2.1 mm to the manual outlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schneider, R.J., Tenenholtz, N.A., Perrin, D.P., Marx, G.R., del Nido, P.J., Howe, R.D.: Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 520–527. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Burlina, P., Mukherjee, R., Juang, R., Sprouse, C.: Recovering endocardial walls from 3D TEE. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 284–293. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Metz, C., Baka, N., Kirisli, H., Schaap, M., Klein, S., Neefjes, L., Mollet, N., Lelieveldt, B., de Bruijne, M., Niessen, W., van Walsum, T.: Regression-based cardiac motion prediction from single-phase cta. IEEE Trans. Med. Imag. 31(6), 1311–1325 (2012)

    Article  Google Scholar 

  4. Cootes, T., Cooper, D., Taylor, C., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Und. 61(1), 38–59 (1995)

    Article  Google Scholar 

  5. Vegas-Sánchez-Ferrero, G., Tristán-Vega, A., Aja-Fernández, S., Martín-Fernández, M., Palencia, C., Deriche, R.: Anisotropic LMMSE denoising of MRI based on statistical tissue models. In: ISBI, pp. 1519–1522 (2012)

    Google Scholar 

  6. van Ginneken, B., Frangi, A., Staal, J., ter Haar Romeny, B., Viergever, M.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imag. 21(8), 924–933 (2002)

    Article  Google Scholar 

  7. Vegas-Sánchez-Ferrero, G., Martín-Martinez, D., Aja-Fernández, S., Palencia, C.: On the influence of interpolation on probabilistic models for ultrasonic images. In: ISBI, pp. 292–295 (2010)

    Google Scholar 

  8. Nillesen, M., Lopata, R., Gerrits, I., Kapusta, L., Thijssen, J., de Korte, C.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound Med. Biol. 34(4), 674–680 (2008)

    Article  Google Scholar 

  9. Moon, T.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)

    Article  Google Scholar 

  10. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(5), 698–700 (1987)

    Article  Google Scholar 

  11. Kirişli, H., Schaap, M., Klein, S., Papadopoulou, S., Bonardi, M., Chen, C., Weustink, A., Mollet, N., Vonken, E.P.A., van der Geest, R., van Walsum, T., Niessen, W.: Evaluation of a multi-atlas based method for segmentation of cardiac cta data: A large-scale, multi-center and multi-vendor study. Medical Physics 37(12), 6279–6292 (2010)

    Article  Google Scholar 

  12. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haak, A. et al. (2013). Segmentation of 3D Transesophageal Echocardiograms by Multi-cavity Active Shape Model and Gamma Mixture Model. In: Liao, H., Linte, C.A., Masamune, K., Peters, T.M., Zheng, G. (eds) Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions. MIAR AE-CAI 2013 2013. Lecture Notes in Computer Science, vol 8090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40843-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40843-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40842-7

  • Online ISBN: 978-3-642-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics