Abstract
Although the study of cerebral vasoreactivity using fMRI is mainly conducted through the BOLD fMRI modality, owing to its relatively high signal-to-noise ratio (SNR), ASL fMRI provides a more interpretable measure of cerebral vasoreactivity than BOLD fMRI. Still, ASL suffers from a low SNR and is hampered by a large amount of physiological noise. The current contribution aims at improving the recovery of the vasoreactive component from the ASL signal. To this end, a Bayesian hierarchical model is proposed, enabling the recovery of perfusion levels as well as fitting their dynamics. On a single-subject ASL real data set involving perfusion changes induced by hypercapnia, the approach is compared with a classical GLM-based analysis. A better goodness-of-fit is achieved, especially in the transitions between baseline and hypercapnia periods. Also, perfusion levels are recovered with higher sensitivity and show a better contrast between gray- and white matter.
Chapter PDF
Similar content being viewed by others
Keywords
References
Krainik, A., Hund-Georgiadis, M., Zysset, S., von Cramon, D.Y.: Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36(6), 1146–1152 (2005)
Cantin, S., Villien, M., Moreaud, O., Tropres, I., Keignart, S., Chipon, E., Le Bas, J.F., Warnking, J., Krainik, A.: Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. Neuroimage 58(2), 579–587 (2011)
Attyé, A., Villien, M., Tahon, F., Warnking, J., Detante, O., Krainik, A.: Normalization of cerebral vasoreactivity using BOLD MRI after intravascular stenting. Hum. Brain Mapp. (2013)
Villien, M., Bouzat, P., Rupp, T., Robach, P., Lamalle, L., Troprès, I., Estève, F., Krainik, A., Lévy, P., Warnking, J., Verges, S.: Changes in cerebral blood flow and vasoreactivity to CO(2) measured by Arterial Spin Labeling after 6 days at 4,350 m. Neuroimage (2013)
Liu, T.T., Brown, G.: Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods. Journal of the International Neuropsychological Society 13, 517–525 (2007)
Hernandez-Garcia, L., Jahanian, H., Rowe, D.B.: Quantitative analysis of arterial spin labeling FMRI data using a general linear model. Magnetic Resonance Imaging 28(7), 919–927 (2010)
Roc, A., Wang, J., Ances, B., Liebeskind, D., Kasner, S., Detre, J.: Altered hemodynamics and regional cerebral blood flow in patients with hemodynamically significant stenoses. Stroke 37(2), 382–387 (2006)
Woolrich, M., Chiarelli, P., Gallichan, D., Perthen, J., Liu, T.: Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magn. Reson. Med. 56(4), 891–906 (2006)
Vincent, T., Risser, L., Ciuciu, P.: Spatially adaptive mixture modeling for analysis of within-subject fMRI time series. IEEE Trans. Med. Imag. 29(4), 1059–1074 (2010)
Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, P.: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27(8), 678–693 (2006)
Dai, W., Garcia, D., de Bazelaire, C., Alsop, D.C.: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn. Reson. Med. 60(6), 1488–1497 (2008)
Vincent, T., Ciuciu, P., Thirion, B.: Sensitivity analysis of parcellation in the joint detection-estimation of brain activity in fMRI. In: 5th Proc. IEEE ISBI, Paris, France, pp. 568–571 (May 2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vincent, T., Warnking, J., Villien, M., Krainik, A., Ciuciu, P., Forbes, F. (2013). Bayesian Joint Detection-Estimation of Cerebral Vasoreactivity from ASL fMRI Data. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40763-5_76
Download citation
DOI: https://doi.org/10.1007/978-3-642-40763-5_76
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40762-8
Online ISBN: 978-3-642-40763-5
eBook Packages: Computer ScienceComputer Science (R0)