Constrained Wine Blending | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8124))

  • 2591 Accesses

Abstract

Assemblage consists in blending base wines in order to create a target wine. Recent developments in aroma analysis allow us to measure chemical compounds impacting the taste of wines. This chemical analysis makes it possible to design a decision tool for the following problem: given a set of target wines, determine which volumes must be extracted from each base wine to produce wines that satisfy constraints on aroma concentration, volumes, alcohol contents and price. This paper describes the modeling of wine assemblage as a non linear constrained Min-Max problem (minimizing the gap to the desired concentrations for every aromatic criterion) efficiently handled by the Ibex interval branch and bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Araya, I., Trombettoni, G., Neveu, B.: A Contractor Based on Convex Interval Taylor. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Belotti, P.: Couenne, a user’s manual (2013), http://www.coin-or.org/Couenne/

  3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box Consistency. In: Proc. ICLP, pp. 230–244 (1999)

    Google Scholar 

  4. Chabert, G.: Interval-Based EXplorer (2013), http://www.ibex-lib.org

  5. Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelligence 173, 1079–1100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dagan, L.: Potentiel aromatique des raisins de Vitis vinifera L. cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de pays Côtes de Gascogne. PhD thesis, École nationale supérieure agronomique, Montpellier (2006)

    Google Scholar 

  7. Datta, S., Nakai, S.: Computer-aided optimization of wine blending. Journal of Food Science 57(1), 178–182 (1992)

    Article  Google Scholar 

  8. Ferrier, J.G., Block, D.E.: Neural-network-assisted optimization of wine blending based on sensory analysis. American Journal of Enology and Viticulture 52(4), 386–395 (2001)

    Google Scholar 

  9. Kearfott, R.B., Novoa III., M.: INTBIS, a portable interval Newton/Bisection package. ACM Trans. on Mathematical Software 16(2), 152–157 (1990)

    Article  MATH  Google Scholar 

  10. Messine, F.: Méthodes d’Optimisation Globale basées sur l’Analyse d’Intervalle pour la Résolution des Problèmes avec Contraintes. PhD thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse (1997)

    Google Scholar 

  11. Moore, D.B., Griffin, T.G.: Computer blending technology. American Journal of Enology and Viticulture 29(1), 50–53 (1978)

    Google Scholar 

  12. Ninin, J., Messine, F., Hansen, P.: A Reliable Affine Relaxation Method for Global Optimization. Technical Report RT-APO-10-05, IRIT (2010)

    Google Scholar 

  13. Tawarmalani, M., Sahinidis, N.V.: A Polyhedral Branch-and-Cut Approach to Global Optimization. Mathematical Programming 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner Regions and Interval Linearizations for Global Optimization. In: AAAI, pp. 99–104 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vismara, P., Coletta, R., Trombettoni, G. (2013). Constrained Wine Blending. In: Schulte, C. (eds) Principles and Practice of Constraint Programming. CP 2013. Lecture Notes in Computer Science, vol 8124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40627-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40627-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40626-3

  • Online ISBN: 978-3-642-40627-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics