Spatial Pattern Templates for Recognition of Objects with Regular Structure | SpringerLink
Skip to main content

Spatial Pattern Templates for Recognition of Objects with Regular Structure

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

We propose a method for semantic parsing of images with regular structure. The structured objects are modeled in a densely connected CRF. The paper describes how to embody specific spatial relations in a representation called Spatial Pattern Templates (SPT), which allows us to capture regularity constraints of alignment and equal spacing in pairwise and ternary potentials.

Assuming the input image is pre-segmented to salient regions the SPT describe which segments could interact in the structured graphical model. The model parameters are learnt to describe the formal language of semantic labelings. Given an input image, a consistent labeling over its segments linked in the CRF is recognized as a word from this language.

The CRF framework allows us to apply efficient algorithms for both recognition and learning. We demonstrate the approach on the problem of facade image parsing and show that results comparable with state of the art methods are achieved without introducing additional manually designed detectors for specific terminal objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Čech, J., Šára, R.: Languages for constrained binary segmentation based on maximum a posteriori probability labeling. IJIST 19(2), 69–79 (2009)

    Google Scholar 

  2. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  3. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: Proc. CVPR (2008)

    Google Scholar 

  4. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. IJCV 80(3), 300–316 (2008)

    Article  Google Scholar 

  5. Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for enforcing label consistency. IJCV 82(3), 302–324 (2009)

    Article  Google Scholar 

  6. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. Trans. PAMI 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  7. Korč, F., Förstner, W.: eTRIMS image database for interpreting images of man-made scenes. Tech. Rep. TR-IGG-P-2009-01 (2009)

    Google Scholar 

  8. Ladicky, L., Russell, C., Kohli, P., Torr, P.: Associative hierarchical CRFs for object class image segmentation. In: Proc. ICCV, pp. 739–746 (2009)

    Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML (2001)

    Google Scholar 

  10. Martinović, A., Mathias, M., Weissenberg, J., Van Gool, L.: A three-layered approach to facade parsing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 416–429. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Nowozin, S., Gehler, P.V., Lampert, C.H.: On parameter learning in CRF-based approaches to object class image segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 98–111. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Schmidt, M., Murphy, K., Fung, G., Rosales, R.: Structure learning in random fields for heart motion abnormality detection. In: Proc. CVPR (2008)

    Google Scholar 

  13. Schmidt, M., Murphy, K.: Convex structure learning in log-linear models: Beyond pairwise potentials. In: Proc. AISTATS (2010)

    Google Scholar 

  14. Simon, L., Teboul, O., Koutsourakis, P., Paragios, N.: Random exploration of the procedural space for single-view 3D modeling of buildings. IJCV 93(2) (2011)

    Google Scholar 

  15. Tighe, J., Lazebnik, S.: Understanding scenes on many levels. In: Proc. ICCV, pp. 335–342 (2011)

    Google Scholar 

  16. Tyleček, R.: The CMP facade database. Research Report CTU–CMP–2012–24. Czech Technical University (2012), http://cmp.felk.cvut.cz/~tylecr1/facade

  17. Tyleček, R., Šára, R.: Modeling symmetries for stochastic structural recognition. In: Proc. ICCV Workshops, pp. 632–639 (2011)

    Google Scholar 

  18. Tyleček, R., Šára, R.: Stochastic recognition of regular structures in facade images. IPSJ Trans. Computer Vision and Applications 4, 12–21 (2012)

    Google Scholar 

  19. Yang, M., Förstner, W.: A hierarchical conditional random field model for labeling and classifying images of man-made scenes. In: Proc. ICCV Workshops (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tyleček, R., Šára, R. (2013). Spatial Pattern Templates for Recognition of Objects with Regular Structure. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics