The Design of a Practical Proof Checker for a Lazy Functional Language | SpringerLink
Skip to main content

The Design of a Practical Proof Checker for a Lazy Functional Language

  • Conference paper
Trends in Functional Programming (TFP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7829))

Included in the following conference series:

Abstract

Pure, lazy functional languages like Haskell provide a sound basis for formal reasoning about programs in an equational style. In practice, however, equational reasoning about correctness proofs is underutilized. In the context of Haskell, we suggest that part of the reason for this is the lack of accessible tools for machine-checked equational reasoning. This paper outlines the design of MProver, a proof checker which fills just that niche. MProver features first-class support for reasoning about potentially undefined computations (particularly important in a lazy setting), and an extended notion of Haskell-like type classes, enabling a highly modular style of program verification that closely follows familiar functional programming idioms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Coq development team: The Coq Proof Assistant Reference Manual. LogiCal Project, Version 8.3 (2010)

    Google Scholar 

  2. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional Programmers. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 55–71. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: ICFP (September 2011)

    Google Scholar 

  4. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, the Revised Report. Cambridge University Press (2003)

    Google Scholar 

  5. Giménez, C.E.: Un calcul de constructions infinies et son application a la verification de systemes communicants, Ph.D. thesis (1996)

    Google Scholar 

  6. Yorgey, B.: Typeclassopedia, http://www.haskell.org/haskellwiki/Typeclassopedia (accessed May 31, 2012)

  7. Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.: Verified Programming in Guru. In: PLPV 2008 (2008)

    Google Scholar 

  8. Benton, N., Kennedy, A., Varming, C.: Some Domain Theory and Denotational Semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Reasoning with the awkward squad. In: ICFP 2008 (2008)

    Google Scholar 

  10. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare Type Theory, Polymorphism and Separation. J. Funct. Program. 18(5-6), 865–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Kesteren, R., van Eekelen, M., de Mol, M.: Proof support for general type classes. In: TFP 2004, pp. 1–16 (2004)

    Google Scholar 

  12. van Eekelen, M., de Mol, M.: Proof tool support for explicit strictness. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015, pp. 37–54. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: POPL 1989, pp. 60–76 (1989)

    Google Scholar 

  14. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 147–162. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Hallgren, T.: Haskell Tools from the Programatica Project. In: Haskell 2003, pp. 103–106 (2003)

    Google Scholar 

  17. Xu, D.N.: Extended static checking for Haskell. In: Haskell 2006, pp. 48–59 (2006)

    Google Scholar 

  18. Xu, D.N., Peyton Jones, S., Claessen, K.: Static contract checking for Haskell. In: POPL 2009, pp. 41–52 (2009)

    Google Scholar 

  19. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: Automatic Exhaustive Testing for Small Values. In: Haskell 2008, pp. 37–48 (2008)

    Google Scholar 

  20. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In: ICFP 2000, pp. 268–279 (2000)

    Google Scholar 

  21. Gill, A.: Introducing the Haskell Equational Reasoning Assistant. In: Haskell 2006, pp. 108–109 (2006)

    Google Scholar 

  22. Schröder, L., Mossakowski, T.: HasCasl: Integrated higher-order specification and program development. Theor. Comput. Sci. 410, 1217–1260 (2009)

    Article  MATH  Google Scholar 

  23. Kieburtz, R.B.: P-logic: property verification for Haskell programs (2002)

    Google Scholar 

  24. Harrison, W.L., Kieburtz, R.B.: The Logic of Demand in Haskell. J. Funct. Program. 15, 837–891 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Howard, B.T.: Inductive, coinductive, and pointed types. In: ICFP 1996: Proceedings of the First ACM SIGPLAN International Conference on Functional Programming, pp. 102–109. ACM, New York (1996)

    Chapter  Google Scholar 

  26. Casinghino III, C., Eades, H.D., Kimmell, G., Sjoberg, V., Sheard, T., Stump, A., Weirich, S.: The preliminary design of the Trellys core language Talk and discussion session at PLPV 2011 (2011)

    Google Scholar 

  27. Norell, U.: Towards a practical programming language based on dependent type theory. Department of Computer Science and Engineering, Chalmers University of Technology (September 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Procter, A., Harrison, W.L., Stump, A. (2013). The Design of a Practical Proof Checker for a Lazy Functional Language. In: Loidl, HW., Peña, R. (eds) Trends in Functional Programming. TFP 2012. Lecture Notes in Computer Science, vol 7829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40447-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40447-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40446-7

  • Online ISBN: 978-3-642-40447-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics