Proof Graphs for Parameterised Boolean Equation Systems | SpringerLink
Skip to main content

Proof Graphs for Parameterised Boolean Equation Systems

  • Conference paper
CONCUR 2013 – Concurrency Theory (CONCUR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8052))

Included in the following conference series:

  • 1077 Accesses

Abstract

Parameterised Boolean equation systems (PBESs) can be used for solving a variety of verification problems such as model checking and equivalence checking problems. The definition of solution for a PBES is notoriously difficult to understand, which makes them hard to work with. Tan and Cleaveland proposed a notion of proof for Boolean equation systems they call support sets. We show that an adapted notion of support sets called proof graphs gives an alternative characterisation of the solution to a PBES, and prove that minimising proof graphs is NP-hard. Finally, we explain how proof graphs may be used in practice and illustrate how they can be used in equivalence checking to generate distinguishing formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: DAC 1995, pp. 427–432. ACM (1995)

    Google Scholar 

  3. Clarke, E., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In: LICS, pp. 19–29. IEEE (2002)

    Google Scholar 

  4. Cranen, S., Groote, J., Reniers, M.: A linear translation from CTL* to the first-order modal μ-calculus. TCS 412, 3129–3139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE Computer Society (1991)

    Google Scholar 

  6. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF minimization and isomorphism testing for monotone formulas. Information and Computation 206(6), 760–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Groote, J.F., Keinänen, M.: A sub-quadratic algorithm for conjunctive and disjunctive Boolean equation systems. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 532–545. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Groote, J., Reniers, M.: Algebraic process verification. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra. Elsevier (2001)

    Google Scholar 

  9. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems (extended abstract). In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 308–324. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Mateescu, R.: Efficient diagnostic generation for Boolean equation systems. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 251–265. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Sahni, S.: Computationally related problems. SICOMP 3(4), 262–279 (1974)

    MathSciNet  Google Scholar 

  13. Tan, L.: Evidence-Based Verification. PhD thesis, Department of Computer Science, State University of New York (2002)

    Google Scholar 

  14. Tan, L., Cleaveland, W.R.: Evidence-based model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200(1-2), 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cranen, S., Luttik, B., Willemse, T.A.C. (2013). Proof Graphs for Parameterised Boolean Equation Systems. In: D’Argenio, P.R., Melgratti, H. (eds) CONCUR 2013 – Concurrency Theory. CONCUR 2013. Lecture Notes in Computer Science, vol 8052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40184-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40184-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40183-1

  • Online ISBN: 978-3-642-40184-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics