Adaptation of Multiscale Function Extension to Inexact Matching: Application to the Mapping of Individuals to a Learnt Manifold | SpringerLink
Skip to main content

Adaptation of Multiscale Function Extension to Inexact Matching: Application to the Mapping of Individuals to a Learnt Manifold

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

This paper targets the specific issue of out-of-sample interpolation when mapping individuals to a learnt manifold. This process involves two successive interpolations, which we formulate by means of kernel functions: from the ambient space to the coordinates space parametrizing the manifold and reciprocally. We combine two existing interpolation schemes: (i) inexact matching, to take into account the data dispersion around the manifold, and (ii) a multiscale strategy, to overcome single kernel scale limitations. Experiments involve synthetic data, and real data from 108 subjects, representing myocardial motion patterns used for the comparison of individuals to both normality and to a given abnormal pattern, whose manifold representation has been learnt previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., et al.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bengio, Y., et al.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. Adv. Neural. Inf. Process. Syst. 16, 177–184 (2004)

    Google Scholar 

  3. Bengio, Y., et al.: Representation learning: a review and new perspectives. arXiv:1206.5538v2 (2012)

    Google Scholar 

  4. Bermanis, A., et al.: Multiscale data sampling and function extension. Appl. Comput. Harmon. Anal. 34, 15–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruveris, M., et al.: Mixture of kernels and iterated semi direct product of diffeomorphisms groups. SIAM Multiscale Model Simul. 10, 1344–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coifman, R.R., Lafon, S.: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21, 31–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Craene, M., et al.: Spatiotemporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography. Med. Image Anal. 16, 427–450 (2012)

    Article  Google Scholar 

  8. Duchateau, N., et al.: A spatiotemporal statistical atlas of motion for the quantification of abnormalities in myocardial tissue velocities. Med. Image Anal. 15, 316–328 (2011)

    Article  Google Scholar 

  9. Duchateau, N., et al.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16, 1532–1549 (2012)

    Article  Google Scholar 

  10. Etyngier, P., et al.: Projection onto a shape manifold for image segmentation with prior. In: Proc. IEEE Int. Conf. Image Process., vol. IV361–IV364 (2007)

    Google Scholar 

  11. Gerber, S., et al.: Manifold modeling for brain population analysis. Med. Image Anal. 14, 643–653 (2010)

    Article  Google Scholar 

  12. Kwok, J.T.Y., Tsang, I.W.H.: The pre-image problem in kernel methods. IEEE Trans. Neural. Netw. 15, 1517–1525 (2004)

    Article  Google Scholar 

  13. Parsai, C., et al.: Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur. Heart J. 30, 940–949 (2009)

    Article  Google Scholar 

  14. Rabin, N., Coifman, R.R.: Heterogeneous datasets representation and learning using diffusion maps and laplacian pyramids. In: Proc. SIAM Int. Conf. Data Mining, pp. 189–199 (2012)

    Google Scholar 

  15. Tenenbaum, J.B., et al.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  16. Zhang, Z., et al.: Adaptive manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 34, 253–265 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duchateau, N., De Craene, M., Sitges, M., Caselles, V. (2013). Adaptation of Multiscale Function Extension to Inexact Matching: Application to the Mapping of Individuals to a Learnt Manifold. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics