Abstract
Periodontal disease is a chronic bacterial infection that affects the gums and bone supporting the teeth. This research work aims to assess the severity level of periodontal disease in dental patients. The presence or absence of sign-symptoms and risk factors make it a complicated diagnostic task. Dentist usually relies on his knowledge, expertise and experiences to design the treatment(s). Therefore, it is found that there is a variation among treatments administered by different dentists. The methodology of Fuzzy Cognitive Maps (FCM) was used to model this problem and then to calculate the severity of the periodontal disease. The relationships between different sign-symptoms have been defined using easily understandable linguistic terms following the construction process of FCM and then converted to numeric values using Mamdani inference method. For convenience, a graphical interface of the system has been designed based on FCM modeling and reasoning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attström, R., Graf-de Beer, M., Schroeder, H.: Clinical and histologic characteristics of normal gingiva in dogs. J. Periodontal Res. 10(3), 115–127 (1975)
Bueno, S., Salmeron, J.: Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Appl. 36(3), 5221–5229 (2009)
Dickerson, J., Kosko, B.: Virtual worlds as fuzzy cognitive maps. In: Virtual Reality Annual International Symposium, 1993 IEEE, pp. 471–477 (1993).
Georgopoulos, V., Stylios, C.: Soft Computing for Information Processing and, Analysis. Augmented fuzzy cognitive maps supplemented with case based reasoning for advanced medical decision support, Springer, Berlin, pp. 391–405 (2005)
Georgopoulos, V.C., Stylios, C.D.: Complementary case-based reasoning and competitive fuzzy cognitive maps for advanced medical decisions. Soft Comput. 12(2), 191–199 (2008)
Giabbanelli, P.J., Torsney-Weir, T., Mago, V.K.: A fuzzy cognitive map of the psychosocial determinants of obesity. Appl. Soft Comput. 12(12), 3711–3724 (2012) ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2012.02.006, http://www.sciencedirect.com/science/article/pii/S1568494612000634
Kannappan, A., Tamilarasi, A., Papageorgiou, E.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst. Appl. 38(3), 1282–1292 (2011)
Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)
Listgarten, M., Ellegaard, B.: Experimental gingivitis in the monkey. J. Periodontal Res. 8(4), 199–214 (1973)
Mago, V., Prasad, B., Bhatia, A., Mago, A.: A decision making system for the treatment of dental caries, Soft Computing Applications in Business, pp. 231–242. Springer, Germany (2008)
Mago, V.K., Bakker, L., Papageorgiou, E.I., Alimadad, A., Borwein, P., Dabbaghian, V.: Fuzzy cognitive maps and cellular automata: An evolutionary approach for social systems modelling. Appl. Soft Comput. 12(12), 3771–3784 (2012) ISSN 1568–4946, http://dx.doi.org/10.1016/j.asoc.2012.02.020,http://www.sciencedirect.com/science/article/pii/S1568494612001081
Mago, V.K., Bhatia, N., Bhatia, A., Mago, A.: Clinical decision support system for dental treatment. Int. J. Comput. Sci. 3(5), 254–261 (2012) ISSN 1877-7503, http://dx.doi.org/10.1016/j.jocs.2012.01.008, http://www.sciencedirect.com/science/article/pii/S1877750312000117
Mago, V.K., Mago, A., Sharma, P., Mago, J.: Fuzzy logic based expert system for the treatment of mobile tooth. In: Arabnia, H.R.R., Tran, Q.N. (eds.) Software tools and algorithms for biological systems, advances in experimental medicine and biology, vol. 696, pp. 607–614. Springer, New York (2011)
Mann, H., Whitney, D.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)
Page, R., Schroeder, H., et al.: Pathogenesis of inflammatory periodontal disease. a summary of current work. Laboratory investigation; J. Tech. Methods Pathol. 34(3), 235–249 (1976)
Papageorgiou, E.: Medical decision making through fuzzy computational intelligent approaches. In: Rauch, J., Ras, Z., Berka, P., Elomaa, T. (eds.) Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol. 5722, pp. 99–108. Springer, Heidelberg (2009)
Papageorgiou, E., Papandrianos, N., Karagianni, G., Kyriazopoulos, G., Sfyras, D.: Fuzzy cognitive map based approach for assessing pulmonary infections. In: Foundations of Intelligent Systems, Springer, Heidelberg, pp. 109–118 (2009)
Papageorgiou, E., Spyridonos, P., Glotsos, D., Stylios, C., Ravazoula, P., Nikiforidis, G., Groumpos, P.: Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl. Soft Comput. 8(1), 820–828 (2008)
Papageorgiou, E., Stylios, C., Groumpos, P.: An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps. IEEE Trans. Biomed. Eng. 50(12), 1326–1339 (2003)
Papageorgiou, E.I., Papandrianos, N., Karagianni, G., Kyriazopoulos, G., Sfyras, D.: Fuzzy cognitive map based approach for assessing pulmonary infections. In: Rauch, J, Ras, Z., Berka, P., Elomaa, T. (eds.) Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol. 5722, pp. 109–118. Springer, Heidelberg (2009)
Payne, W., Page, R., Ogilvie, A., Hall, W.: Histopathologic features of the initial and early stages of experimental gingivitis in man. J. Periodontal Res. 10(2), 51–64 (1975)
Salmeron, J.L., Lopez, C.: Forecasting risk impact on ERP maintenance with augmented fuzzy cognitive maps. IEEE Trans. Softw. Eng. 38(2), 439–452 (2012)
Salmeron, J., Vidal, R., Mena, A.: Ranking fuzzy cognitive map based scenarios with topsis. Expert Syst. Appl. 39(3), 2443–2450 (2012)
Salmeron, J.L., Papageorgiou, E.I.: A fuzzy grey cognitive maps-based decision support system for radiotherapy treatment planning. Knowl-Based Syst. 30(0), 151–160 (2012) DOI10.1016/j.knosys.2012.01.008. http://www.sciencedirect.com/science/article/pii/S0950705112000172
Schroeder, H., Page, R.: Lymphocyte-fibroblast interaction in the pathogenesis of inflammatory gingival disease. Cell. Mol. Life Sci. 28(10), 1228–1230 (1972)
Stylios, C., Groumpos, P.: Fuzzy cognitive maps: a soft computing technique for intelligent control. Intelligent control, 2000. In: Proceedings of the 2000 IEEE International Symposium on, IEEE, pp. 97–102 (2000)
Stylios, C., Groumpos, P.: Fuzzy cognitive maps in modeling supervisory control systems. J. Intell. Fuzzy Syst.-Appl. Eng. Tech. 8(2), 83–98 (2000)
Taber, R.: Knowledge processing with fuzzy cognitive maps. Expert Syst. Appl. 2(1), 83–87 (1991)
Tsadiras, A.: Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Inf. Sci. 178(20), 3880–3894 (2008)
Acknowledgments
The authors would like to thank Dr. Nistha Madan, Nitin Bhatia, Lakwinder Kaur and Reetu Salaria for their initial help during the construction of FCM model and later during the simulation and verification of the results.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mago, V.K., Papageorgiou, E.I., Mago, A. (2014). Employing Fuzzy Cognitive Map for Periodontal Disease Assessment. In: Papageorgiou, E. (eds) Fuzzy Cognitive Maps for Applied Sciences and Engineering. Intelligent Systems Reference Library, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39739-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-39739-4_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39738-7
Online ISBN: 978-3-642-39739-4
eBook Packages: EngineeringEngineering (R0)