Fuzzy Cognitive Maps for Structural Damage Detection | SpringerLink
Skip to main content

Fuzzy Cognitive Maps for Structural Damage Detection

  • Chapter
  • First Online:
Fuzzy Cognitive Maps for Applied Sciences and Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 54))

Abstract

Fuzzy cognitive map (FCM) is applied to the problem of structural damage detection. Structures are important parts of infrastructure and engineering systems and include buildings, bridges, aircraft, rockets, helicopters, wind turbines, gas turbines and nuclear power plants, for example. Structural health monitoring (SHM) is the field which evaluates the condition of structures and locates, quantifies and suggests remedial action in case of damage. Damage is caused in structures due to loading, fatigue, fracture, environmental degradation, impact etc. In this chapter, the damage is modeled in a cantilever beam using the continuum damage and natural frequencies are used as damage indicators. Finite element analysis, which is a procedure for numerically solving partial differential equations, is used to solve the mathematical physics problem of finding the natural frequencies. The measurement deviations due to damage are fuzzified. Then they are mapped to a set of damage locations using FCM. An improvement in performance of the FCM is obtained using an unsupervised neural network approach based on Hebbian learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthi, K., Tamilarasi, A., Papageorgiou, E.I.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst. Appl. 38, 1282–1292 (2011)

    Article  Google Scholar 

  2. Bakhary, N., Hao, H., Deeks, A.: J.: Damage detection using artificial neural network with consideration of uncertainties. Eng. Struct. 29(11), 2806–2815 (2007)

    Google Scholar 

  3. Beena, P., Ganguli, R.: Structural damage detection using fuzzy cognitive maps and hebbian learning. Appl. Soft Comput. 11(1), 1014–1020 (2011)

    Article  Google Scholar 

  4. Cat, J.: Fuzzy empiricism and fuzzy set causality: what is all the fuzz about?. Philos. Sci. 73(1), 26–41 (2006)

    Google Scholar 

  5. Chandrashekhar, M., Ganguli, R.: Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mech. Syst. Sig. Proc. 23(2), 384–404 (2009)

    Article  Google Scholar 

  6. Chen, C.C., Lee, J.R., Bang, H.J.: Structural health monitoring for a wind turbine syem: a Review of damage detection methods. Meas. Sci. Technol. 19(12), 1157–1165 (2008). Art. 122001

    Google Scholar 

  7. Chondros, T.G., Dimarogans, A.D., Yao, J.: Vibration of a beam with a breathing crack. J. Sound Vib. 239(1), 57–69 (2001)

    Article  Google Scholar 

  8. Fraraccio, G., Brugger, A., Betti, R.: Identification and damage detection in structures subjected to base excitation. Exp. Mech. 48(4), 521–528 (2008)

    Article  Google Scholar 

  9. Ganguli, R.: A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data. J. Intell. Mater. Syst. Struct. 12(6), 397–407 (2001)

    Article  Google Scholar 

  10. Ghazanfari, M., Alizadeh, S., Fathian, M., Koulouriotis, D.E.: Comparing simulated annealing and genetic algorithm in learning FCM. Appl. Math. Comput. 192(1), 56–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glykas, M.: Fuzzy cognitive strategic maps in business process performance measurement. Expert Syst. Appl. 40(1), 1–14 (2013)

    Article  Google Scholar 

  12. Gomes, H.M., Silva, N.R.S.: Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method. Appl. Math. Model. 32(11), 2216–2232 (2008)

    Article  MATH  Google Scholar 

  13. Groumpos, P., Stylios, C.: Modeling supervisory control systems using fuzzy cognitive maps. Chaos, Solitons Fractals 11, 329–336 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. John Wiley, New York (1949)

    Google Scholar 

  15. Jain, A., Kumar, A.M.: Hybrid neural network models for hydrologic time series Fo-recasting. Appl. Soft Comput. 7(2), 585–592 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kam, T.Y, Lee, T.Y.: Detection of cracks in structures using modal test data. Eng. Fract. Mech. 42(2), 381–387 (1992)

    Google Scholar 

  17. Kannappan, A., Tamilrasi, A., Papageorgiou, E.I.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst. Appl. 38(3), 1282–1292 (2011)

    Article  Google Scholar 

  18. Kim, H.J., Shin, K.S.: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets. Appl. Soft Comput. 7(2), 569–576 (2007)

    Article  Google Scholar 

  19. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  20. Kosko, B.: Fuzzy Engineering. Prentice-Hall, New Jersey (1997)

    MATH  Google Scholar 

  21. Lee, K.C., Kin, J.S., Chung, N.H., Kwon, S.J.: Fuzzy cognitive map approach to web-mining inference amplification. J. Expert Syst. Appl. 22, 197–211 (2002)

    Article  Google Scholar 

  22. Min, J., Park, S., Yun, C.B.: Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng. Struct. 39, 210–220 (2012)

    Article  Google Scholar 

  23. Nobahari, M., Seyedpoor, S.M.: Structural damage detection using efficient correlation-based index and a modified genetic algorithm. Math. Comput. Model. 53(9–10), 1798–1809 (2011)

    Article  MATH  Google Scholar 

  24. Pajares, G., de la Cruz, J.M.: Fuzzy cognitive maps for stereovision matching. Pattern Recogn. 39(11), 2101–2114 (2006)

    Article  MATH  Google Scholar 

  25. Palaes, C.E., Bowles, J.B.: Using fuzzy cognitive maps as a system model for failure modes and effects analysis. Inf. Sci. 88, 177–199 (1996)

    Article  Google Scholar 

  26. Panigrahi, S.P., Nayak, S.K.: Hybrid ANN reducing training time requirements and decision delay of equalization in presence of co-channel interference. Appl. Soft Comput. 8(4), 1536–1538 (2008)

    Article  Google Scholar 

  27. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: An integrated two-level hierarchial decision making system based on fuzzy cognitive maps (FCMs). IEEE Trans. Biomed. Eng. 50(12), 1326–1339 (2003)

    Article  Google Scholar 

  28. Papageorgiou, E.I., Spyridonos, P.P., Stylios, C.D., Ravazoula, P.P., Groumpos, P.P., Nikforidis, G.N.: Advanced Soft computing diagnosis method for tumor grading. Artif. Intell. Med. 36, 59–70 (2006)

    Article  Google Scholar 

  29. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Unsupervised learning technique for fine-tuning fuzzy cognitive map causal links. Int. J. Hum Comput Stud. 64, 727–743 (2006)

    Article  Google Scholar 

  30. Papageorgiou, E.I., Spyridonos, P.P., Glotsos, D.T., Stylios, C.D., Ravazoula, P., Nikifordis, G.N., Groumpos, P.P.: Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl. Soft Comput. 8(1), 820–828 (2008)

    Article  Google Scholar 

  31. Papageorgiou, E.I., Kannappan, A.: Fuzzy cognitive map ensemble learning paradigm to solve classification problems: application to autism identification. Appl. Soft Comput. J., Special Issue of Fuzzy Cognitive Maps, online: http://dx.doi.org/10.1016/j.asoc.2012.03.064

  32. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive map research at the last decade. IEEE Trans. Fuzzy Syst. (IEEE TFS), in press (2012)

    Google Scholar 

  33. Papageorgiou, E.I., Salmeron, J.L.: Learning fuzzy grey cognitive maps using non-linear hebbian approach. Int. J. Approximate Reasoning 53(1), 54–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Papageorgio, E.I., Markinos, A.T., Gemtos, T.A.: Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agricultural application. Appl. Soft Comput. 11(4), 3643–3657 (2011)

    Article  Google Scholar 

  35. Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps—a review study. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 150–163 (2012)

    Article  Google Scholar 

  36. Papakostas, G.A.: Towards hebbian learning of fuzzy cognitive maps in pattern classification problems. Expert Syst. Appl. 39(12), 10620–10629 (2012)

    Article  Google Scholar 

  37. Reddy, R.R.K., Ganguli, R.: Structural damage detection in a helicopter rotor blade using radial basis function neural networks. Smart Mater. Struct. 12(2), 232–241 (2003)

    Article  Google Scholar 

  38. Roy, N., Ganguli, R.: Filter design using radial basis function neural network and genetic algorithm for improved operational health monitoring. Appl. Soft Comput. 6(2), 154–169 (2006)

    Article  Google Scholar 

  39. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  40. Sawyer, J.P., Rao, S.S.: Structural damage detection and identification using fuzzy logic. AIAA J. 38(12), 2328–2335 (2000)

    Article  Google Scholar 

  41. Schuster, K., Kowalsky, U., Dieter, D.: System identification and structural health motoring using piezoceramic actuators. Mech. Adv. Mater. Struct. 18(7), 540–547 (2011)

    Article  Google Scholar 

  42. Srinivasu, D.S., Babu, N.R.: A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl. Soft Comput. 8(1), 809–819 (2008)

    Google Scholar 

  43. Stach, W., Kurgan, L.A., Pedrycz, W.: Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. 16(1), 61–72 (2008)

    Article  Google Scholar 

  44. Stylios, C.D., Georgopoulus, V.C., Malandraki, G.A., Chouliara., S.: Fuzzy cognitive map architecture for medical decision support systems. Appl. Soft Comput. 8(3), 1243–1251 (2008)

    Google Scholar 

  45. Taber, R.: Knowledge processing with fuzzy cognitive maps. Expert Syst. Appl. 2, 83–87 (1991)

    Article  Google Scholar 

  46. Zhang, J., Sato, T., Lai, S., et al.: A pattern recognition technique for structural identification using observed vibration signals. Eng. Struct. 30(5), 1439–1446 (2008)

    Article  Google Scholar 

  47. Zheng, S.J., Li, Z.Q., Wang, H.T.: A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams. Expert Syst. Appl. 38(9), 11837–11842 (2011)

    Article  Google Scholar 

  48. Zheng, L., Kleiner, Y.: State-of-the art review of technologies for pipe structural health monitoring. IEEE Sens. J. 12(6), 1965–1972 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganguli, R. (2014). Fuzzy Cognitive Maps for Structural Damage Detection. In: Papageorgiou, E. (eds) Fuzzy Cognitive Maps for Applied Sciences and Engineering. Intelligent Systems Reference Library, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39739-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39739-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39738-7

  • Online ISBN: 978-3-642-39739-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics