Abstract
We extend the notions of completion and loop formulas of normal logic programs with functions to a class of nested expressions that properly include disjunctive logic programs. We show that answer sets for such a logic program can be characterized as the models of its completion and loop formulas. These results provide a basis for computing answer sets of disjunctive programs with functions, by solvers for the Constraint Satisfaction Problem. The potential benefit in answer set computations for this approach has been demonstrated previously in the implementation called fasp. We also present a formulation of completion and loop formulas for disjunctive logic programs with variables. This paper focuses on the theoretical development of these extensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: KR 2012, Rome, Italy, pp. 2–12. AAAI Press (2012)
Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)
Bria, A., Faber, W., Leone, N.: Normal Form Nested Programs. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 76–88. Springer, Heidelberg (2008)
Cabalar, P.: A functional action language front-end. In: ASPOCP 2005 (July 2005), http://www.dc.fi.udc.es/~cabalar/asp05_C.pdf
Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)
Chen, Y., Lin, F., Wang, Y., Zhang, M.: First-order loop formulas for normal logic programs. In: KR 2006, UK, pp. 298–307. AAAI Press (2006)
Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3(4-5), 499–518 (2003)
Erdoğan, S.T., Lifschitz, V.: Definitions in answer set programming. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 483–484. Springer, Heidelberg (2003)
Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175(1), 236–263 (2011)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP 1988, Seattle, Washington, pp. 1070–1080. MIT Press (1988)
Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)
Lee, J.: A model-theoretic counterpart of loop formulas. In: IJCAI 2005, Edinburgh, Scotland, UK, pp. 503–508. Professional Book Center (2005)
Lee, J., Meng, Y.: First-order stable model semantics and first-order loop formulas. J. Artif. Intell. Res. (JAIR) 42, 125–180 (2011)
Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)
Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge Representation, pp. 69–127. CSLI Publications (1996)
Lifschitz, V.: Logic programs with intensional functions. In: KR 2012, Rome, Italy, pp. 24–31. AAAI Press (2012)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7(2), 261–268 (2006)
Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)
Lin, F., Wang, Y.: Answer set programming with functions. In: KR 2008, Sydney, Australia, pp. 454–464. AAAI Press (2008)
Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)
Liu, L., Truszczynski, M.: Properties and applications of programs with monotone and convex constraints. JAIR 27, 299–334 (2006)
Wiktor Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Berlin (1999)
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)
Pearce, D., Valverde, A.: Towards a First Order Equilibrium Logic for Nonmonotonic Reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147–160. Springer, Heidelberg (2004)
Šimkus, M., Eiter, T.: \(\mathbb{FDNC}\): Decidable non-monotonic disjunctive logic programs with function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 514–530. Springer, Heidelberg (2007)
Wang, Y., You, J.-H., Lin, F., Yuan, L.-Y., Zhang, M.: Weight constraint programs with evaluable functions. AMAI 60(3-4), 341–380 (2010)
Yang, B., Zhang, M., Zhang, Y.: Applying answer set programming to points-to analysis of object-oriented language. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 676–685. Springer, Heidelberg (2011)
You, J.-H., Yuan, L.-Y., Mingyi, Z.: On the equivalence between answer sets and models of completion for nested logic programs. In: IJCAI 2003, Acapulco, Mexico, pp. 859–866. Morgan Kaufmann (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Y., You, JH., Zhang, M. (2013). Embedding Functions into Disjunctive Logic Programs. In: Liu, Z., Woodcock, J., Zhu, H. (eds) Theoretical Aspects of Computing – ICTAC 2013. ICTAC 2013. Lecture Notes in Computer Science, vol 8049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39718-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-39718-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39717-2
Online ISBN: 978-3-642-39718-9
eBook Packages: Computer ScienceComputer Science (R0)