MaxSAT-Based MCS Enumeration | SpringerLink
Skip to main content

MaxSAT-Based MCS Enumeration

  • Conference paper
Hardware and Software: Verification and Testing (HVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7857))

Included in the following conference series:

Abstract

Enumeration of Minimal Correction Sets (MCS) finds a wide range of practical applications, including the identification of Minimal Unsatisfiable Subsets (MUS) used in verifying the complex control logic of microprocessor designs (e.g. in the CEGAR loop of RevealTM [1,2]). Current state of the art MCS enumeration exploits core-guided MaxSAT algorithms, namely the so-called MSU3 [16] MaxSAT algorithm. Observe that a MaxSAT solution corresponds to a minimum sized MCS, but a formula may contain MCSes larger than those reported by a MaxSAT solution. These are obtained by enumerating all MaxSAT solutions. This paper proposes novel approaches for MCS enumeration, in the context of SMT, that exploit MaxSAT algorithms other than the MSU3 algorithm. Among other contributions, the paper proposes new blocking techniques that can be applied to different MCS enumeration algorithms. In addition, the paper conducts a comprehensive experimental evaluation of MCS enumeration algorithms, including both the existing and the novel algorithms. Problem instances from hardware verification, the SMT-LIB, and the MaxSAT Evaluation are considered in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andraus, Z.S.: Automatic Formal Verification of Control Logic in Hardware Designs. PhD Dissertation, University of Michigan (2009)

    Google Scholar 

  2. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A formal verification tool for verilog designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 343–352. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimization problems. In: International Joint Conference on Artificial Intelligence, pp. 393–398 (2009)

    Google Scholar 

  4. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010), http://www.SMT-LIB.org

  5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press (2009)

    Google Scholar 

  6. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs: Foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS (LNAI), vol. 6355, pp. 154–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. de Kleer, J., Williams, B.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)

    Article  MATH  Google Scholar 

  11. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. Computing Research Repository abs/0712.0097 (2007)

    Google Scholar 

  16. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Design, Automation and Test in Europe, pp. 408–413 (2008)

    Google Scholar 

  17. Morgado, A., Marques-Silva, J.: Combinatorial optimization solutions for the maximum quartet consistency problem. Fundam. Inform. 102(3-4), 363–389 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  21. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: Workshop on Variability Modelling of Software-Intensive Systems, pp. 83–91 (2012)

    Google Scholar 

  22. Prestwich, S.: Variable dependency in local search: Prevention is better than cure. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design (November 2007)

    Google Scholar 

  25. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and Computation 3(3), 141–224 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Sebastiani, R., Tomasi, S.: Optimization in SMT with \(\mathcal{LA}(\mathbb{Q})\) cost functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 484–498. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morgado, A., Liffiton, M., Marques-Silva, J. (2013). MaxSAT-Based MCS Enumeration. In: Biere, A., Nahir, A., Vos, T. (eds) Hardware and Software: Verification and Testing. HVC 2012. Lecture Notes in Computer Science, vol 7857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39611-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39611-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39610-6

  • Online ISBN: 978-3-642-39611-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics