Abstract
When we create an environment of virtual reality based training that integrates one or several haptic devices sometimes the first choice to make is the device to use. This paper introduces an algorithm that allows us, for a particular task to be simulated in a virtual environment, to find key data for the design of appropriate haptic device, or to select the clues in order to get optimum performance for that environment and that particular task.
Chapter PDF
Similar content being viewed by others
References
Agha, R., Muir, G.: Does laparoscopic surgery spell the end of the open surgeon? J. R. Soc. Med. 96, 544–546 (2003)
Ahlberg, G., Heikkinen, T., Iselius, L., Leijonmarck, C.E., Rutqvist, J., Arvidsson, D.: Does training in a virtual reality simulator improve surgical performance? Surg. Endosc. 16, 126–129 (2002)
Rosen, J., Hannaford, B., MacFarlane, M.P., Sinanan, M.: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-experimental performance evaluation. IEEE Transactions on Biomedical Engineering 46 (1999)
Burdea, G., Patounakis, G., Popescu, V., Weiss, R.E.: Virtual reality-based training for the diagnosis of prostate cancer. IEEE Transactions on Biomedical Engineering 46 (1999)
FoderoII, K., King, H., Lum, M., Bland, C., Rosen, J., Sinanan, M., Hannaford, B.: Control system architecture for a minimally invasive surgical robot. In: Proceedings of Medicine Meets Virtual Reality (2006)
Ward, J., Wills, D., Sherman, K., Mohsen, A.: The development of an arthroscopic surgical simulator with haptic feedback. Future Generation Computer Systems 550, 1–9 (1998)
Grace, P., Borley, N., Grace, P.: Surgery at a Glance. Blackwell Science (2002)
Alfonso, C.D., Blanquer, I., Segrelles, D., Hernndez, V.: Simulacion quirurgica sobre escenarios realistas. In: Proceedings of Congreso Nacional de Informatica Medica-Informed (2002)
Immonen, L.: Haptics in Military Applications. Diss. University of Tampere (December 2008); Web (November 8, 2012)
Jiang, L., Girotra, R., Cutkosky, M., Ullrich, C.: Reducing Error Rates with Low-Cost Haptic Feedback in Virtual Reality-Based Training Applications. In: Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics (2005)
Fogg, B.J., Cutler, L.D., Arnold, P., Eisbach, C.: HandJive: a device for interpersonal haptic entertainment. In: CHI 1998: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 57–64 (1998)
Müller, W., Bockholt, U., Lahmer, A., Voss, G., Börner, M.: VRATS Virtual Reality Arthroscopy Training Simulator. Radiologe 40, 290–294 (2000)
SanMartin, J., Trivino, G., Bayona, S.: Mechanical design of a minimal invasive surgery trainer using the manipulability as measure of optimization. In: Proceedings of IEEE International Conference on Mechatronics, ICM (2007)
Sobh, T., Toundykov, D.: Optimizing the tasks at hand robotic manipulators. IEEE Robotics & Automation Magazine 11(2), 78–85 (2004)
Alqasemi, R., McCaffrey, E., Edwards, K., Dubey, R.: Analysis, evaluation and development of wheelchair-mounted robotic arms. In: Proceedings of International Conference on Rehabilitation Robotics, ICORR (2005)
Guilamo, L., Kuffner, J., Nishiwaki, K., Kagami, S.: Manipulability optimization for trajectory generation. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA (2006)
Masuda, T., Fujiwara, M., Kato, N., Arai, T.: Mechanism configuration evaluation of a linear-actuated parallel mechanism using manipulability. In: Proceedings of IEEE International Conference on Robotics and Automation (2002)
Bayle, B., Fourquet, J.Y., Renaud, M.: Manipulability of wheeled mobile manipulators: Application to motion generation. The International Journal of Robotics Research 22, 565–581 (2003)
Liu, H., Huang, T., Zhao, X., Mei, J., Chetwynd, D.: Manipulability of wheeled mobile manipulators: Application to motion generation. Mechanism and Machine Theory 42, 1643–1652 (2007)
Wang, S., Yue, L., Li, Q., Ding, J.: Conceptual design and dimensional synthesis of “microhand”. Mechanism and Machine Theory 43, 1186–1197 (2008)
Martin, J.S.: A study of the attenuation in the properties of haptic devices at the limit of the workspace. In: Shumaker, R. (ed.) VMR 2009. LNCS, vol. 5622, pp. 375–384. Springer, Heidelberg (2009)
Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT Press, Cambridge (1990)
Cavusoglu, M.C., Feygin, D., Tendick, F.: A critical study of the mechanical and electrical properties of the phantom haptic interface and improvements for high performance control. Teleoper ators and Virtual Environments 11, 555–568 (2002)
Yokokohji, Y., Yoshikawa, T.: Guide of master arms considering operator dynamics. Journal of Dynamic Systems, Measurement, and Control 115(2A), 253–260 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
San Martin, J., Corenthy, L., Pastor, L., Garcia, M. (2013). Optimal Design of a Haptic Device for a Particular Task in a Virtual Environment. In: Shumaker, R. (eds) Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. VAMR 2013. Lecture Notes in Computer Science, vol 8021. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39405-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-39405-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39404-1
Online ISBN: 978-3-642-39405-8
eBook Packages: Computer ScienceComputer Science (R0)