Approximate Matching between a Context-Free Grammar and a Finite-State Automaton | SpringerLink
Skip to main content

Approximate Matching between a Context-Free Grammar and a Finite-State Automaton

  • Conference paper
Implementation and Application of Automata (CIAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7982))

Included in the following conference series:

Abstract

Given a context-free grammar (CFG) and a finite-state automaton (FA), we tackle the problem of computing the most similar pair of strings from two languages. We in particular consider three different gap cost models, linear, affine and concave models, that are crucial for finding a proper alignment between two bio sequences. We design efficient algorithms for computing the edit-distance between a CFG and an FA under these gap cost models. The time complexity of our algorithm for computing the linear or affine gap distance is polynomial and the time complexity for the concave gap distance is exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free languages. SIAM Journal on Computing 1(4), 305–312 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16, 87–90 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theoretical Computer Science 286(1), 117–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cocke, J.: Programming languages and their compilers: Preliminary notes. Courant Institute of Mathematical Sciences. New York University (1969)

    Google Scholar 

  5. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 13(2), 94–102 (1970)

    Article  MATH  Google Scholar 

  7. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345–348 (1962)

    Article  Google Scholar 

  8. Younger, D.H.: Recognition and parsing of context-free languages in time n 3. Information and Control 10(2), 189–208 (1967)

    Article  MATH  Google Scholar 

  9. Han, Y.-S., Ko, S.-K., Salomaa, K.: Computing the edit-distance between a regular language and a context-free language. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 85–96. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  11. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal of Automata, Languages and Combinatorics 9, 293–309 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Kasami, T.: An efficient recognition and syntax-analysis algorithm for context-free languages. Technical report, Air Force Cambridge Research Lab, Bedford, MA (1965)

    Google Scholar 

  13. Knight, J.R., Myers, E.W.: Approximate regular expression pattern matching with concave gap penalties. Algorithmica 14, 67–78 (1995)

    Article  MathSciNet  Google Scholar 

  14. Konstantinidis, S.: Computing the edit distance of a regular language. Information and Computation 205, 1307–1316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  16. Lyon, G.: Syntax-directed least-errors analysis for context-free languages: a practical approach. Communications of the ACM 17(1), 3–14 (1974)

    Article  MATH  Google Scholar 

  17. Miller, W., Myers, E.W.: Sequence comparison with concave weighting functions. Bulletin of Mathematical Biology 50(2), 97–120 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Mohri, M.: Edit-distance of weighted automata: General definitions and algorithms. International Journal of Foundations of Computer Science 14(6), 957–982 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Myers, G.: Approximately matching context-free languages. Information Processing Letters 54, 85–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  21. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley (1983)

    Google Scholar 

  22. Waterman, M.S.: Efficient sequence alignment algorithms. Journal of Theoretical Biology 108, 333–337 (1984)

    Article  MathSciNet  Google Scholar 

  23. Wood, D.: Theory of Computation. Harper & Row (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, YS., Ko, SK., Salomaa, K. (2013). Approximate Matching between a Context-Free Grammar and a Finite-State Automaton. In: Konstantinidis, S. (eds) Implementation and Application of Automata. CIAA 2013. Lecture Notes in Computer Science, vol 7982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39274-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39274-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39273-3

  • Online ISBN: 978-3-642-39274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics