Towards Nominal Context-Free Model-Checking | SpringerLink
Skip to main content

Towards Nominal Context-Free Model-Checking

  • Conference paper
Implementation and Application of Automata (CIAA 2013)

Abstract

Two kinds of automata are introduced, for recognising regular and context-free nominal languages. We compare their expressive power with that of analogous proposals in the literature. Some properties of our languages are proved, in particular that emptiness of a context-free nominal language L is decidable, and that the intersection of L with a regular nominal language is still context-free. This paves the way for model-checking systems against access control properties in the nominal case, which is our main objective.

This work has been partially supported by the MIUR project Security Horizons, and by IST-FP7-FET open-IP project ASCENS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. JCS 17(5), 799–837 (2009)

    Google Scholar 

  2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Benedikt, M., Ley, C., Puppis, G.: Automata vs. logics on data words. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bojanczyk, M.: Data monoids. In: Dürr, C., Wilke, T. (eds.) STACS 2011, vol. 9, pp. 105–116. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  5. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets (2011), http://www.mimuw.edu.pl/~sl/PAPERS/lics11full.pdf

  6. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. LICS, pp. 355–364. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  7. Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages of data words. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 391–405. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Degano, P., Ferrari, G.-L., Mezzetti, G.: Nominal automata for resource usage control. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 125–137. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint ltl: Decidability and complexity. Information and Computation 205(1), 2–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrari, G.L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. TOSEM 12(4), 440–473 (2003)

    Article  Google Scholar 

  13. Gordon, A.D.: Notes on nominal calculi for security and mobility. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Hazel, P.: Pcre: Perl compatible regular expressions (2005), http://www.pcre.org/pcre.txt

  16. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Montanari, U., Pistore, M.: π-calculus, structured coalgebras, and minimal hd-automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 569–578. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Parys, P.: Higher-order pushdown systems with data. In: Faella, M., Murano, A. (eds.) GandALF. EPTCS, vol. 96, pp. 210–223 (2012)

    Google Scholar 

  20. Perrin, D., Pin, J.E.: Infinite words: automata, semigroups, logic and games. Pure and Applied Mathematics, vol. 141. Elsevier (2004)

    Google Scholar 

  21. Pitts, A.M.: Nominal sets names and symmetry in computer science: Names and symmetry in computer science. Cambridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press

    Google Scholar 

  22. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically create local names, or what’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  23. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344. IEEE Computer Society Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degano, P., Ferrari, GL., Mezzetti, G. (2013). Towards Nominal Context-Free Model-Checking. In: Konstantinidis, S. (eds) Implementation and Application of Automata. CIAA 2013. Lecture Notes in Computer Science, vol 7982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39274-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39274-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39273-3

  • Online ISBN: 978-3-642-39274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics