A Hypergraph Based Framework for Intelligent Tutoring of Algebraic Reasoning | SpringerLink
Skip to main content

A Hypergraph Based Framework for Intelligent Tutoring of Algebraic Reasoning

  • Conference paper
Artificial Intelligence in Education (AIED 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7926))

Included in the following conference series:

  • 4725 Accesses

Abstract

The translation of word problems into equations is one of the major difficulties for students regarding problem solving. This paper describes both a domain-specific knowledge representation and an inference engine based on hypergraphs that permits intelligent student supervision of this stage of the solving process. The framework presented makes it possible to simultaneously: a) represent all potential algebraic solutions to a given word problem; b) keep track of the student’s actions; c) provide automatic remediation; and d) determine the current state of the resolution process univocally. Starting from these ideas, we have designed an intelligent tutoring system (ITS). An experimental evaluation supports the use of this ITS in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Filloy, E., Rojano, T., Puig, L.: Educational Algebra. A Theoretical and Empirical Approach. Springer, New York (2008)

    Google Scholar 

  2. Croteau, E.A., Heffernan, N.T., Koedinger, K.R.: Why are Algebra Word Problems Difficult? Using Tutorial Log Files and the Power Law of Learning to Select the Best Fitting Cognitive Model. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 240–250. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Chang, K.E., Sung, Y.T., Lin, S.F.: Computer-assisted learning for mathematical problem solving. Computers & Education 46(2), 140–151 (2006)

    Article  Google Scholar 

  4. Heffernan, N.T., Koedinger, K.R.: Intelligent Tutoring Systems are Missing the Tutor: Building a More Strategic Dialog-Based Tutor. In: Rose, C.P., Freedman, R. (eds.) Building Dialogue Systems for Tutorial Applications, Papers of the 2000 AAAI Fall Symposium, pp. 14–19. AAAI Press, Menlo Park (2000)

    Google Scholar 

  5. Koedinger, K.R., Anderson, J.R.: Illustrating Principled Design: The Early Evolution of a Cognitive Tutor for Algebra Symbolization. Interactive Learning Environments 5(1), 161–179 (1998)

    Article  Google Scholar 

  6. Fridman, L.M.: Los grafos trinomiales como metalenguaje de los problemas. Matemáticas. Revista del Departamento de Matemáticas de la Universidad de Sonora 17-18, 51–59 (1990)

    Google Scholar 

  7. Do, N., Pham, T.-L.: Knowledge representation and algorithms for automatic solving integral problems. In: Proc. 6th Int. Computer Science & Education (ICCSE), pp. 730–735 (2011)

    Google Scholar 

  8. Mitrovic, A., Martin, B., Suraweera, P.: Intelligent tutors for all: the constraint based approach. IEEE Intelligent Systems 22(4), 38–45 (2007)

    Article  Google Scholar 

  9. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  10. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelligence in Education 16(3), 227–265 (2006)

    Google Scholar 

  11. Arevalillo-Herráez, M., Arnau, D., González-Calero, J.A., Ayesh, A.: Domain specific knowledge Representation for an Intelligent Tutoring System to Teach Algebraic Reasoning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 630–631. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Arnau, D., Arevalillo-Herráez, M., Puig, L., González-Calero, J.A.: Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computers & Education 63, 119–130 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arevalillo-Herráez, M., Arnau, D. (2013). A Hypergraph Based Framework for Intelligent Tutoring of Algebraic Reasoning. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds) Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science(), vol 7926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39112-5_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39111-8

  • Online ISBN: 978-3-642-39112-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics