Abstract
In this work we derive a novel density driven diffusion scheme for image enhancement. Our approach, called D3, is a semi-local method that uses an initial structure-preserving oversegmentation step of the input image. Because of this, each segment will approximately conform to a homogeneous region in the image, allowing us to easily estimate parameters of the underlying stochastic process thus achieving adaptive non-linear filtering. Our method is capable of producing competitive results when compared to state-of-the-art methods such as non-local means, BM3D and tensor driven diffusion on both color and grayscale images.
Chapter PDF
Similar content being viewed by others
References
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, vol. 2, pp. 60–65 (June 2005)
Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. PAMI 24, 603–619 (2002)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. In: IEEE International Conference on Image Processing, ICIP 2007, September 16-October 19, vol. 1, pp. I-313, I-316 (2007)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3d filtering. In: SPIE (2006)
Åström, F., Baravdish, G., Felsberg, M.: On Tensor-Based PDEs and their Corresponding Variational Formulations with Application to Color Image Denoising. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 215–228. Springer, Heidelberg (2012)
Weickert, J.: Anisotropic Diffusion In Image Processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)
Mester, R., Conrad, C., Guevara, A.: Multichannel segmentation using contour relaxation: fast super-pixels and temporal propagation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 250–261. Springer, Heidelberg (2011)
Åström, F., Felsberg, M., Baravdish, G., Lundström, C.: Targeted Iterative Filtering. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 1–11. Springer, Heidelberg (2013)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. PAMI 12, 629–639 (1990)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)
Felsberg, M.: Autocorrelation-driven diffusion filtering. TIP 20(7), 1797–1806 (2011)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (July 2001)
Åström, F., Felsberg, M., Lenz, R.: Color Persistent Anisotropic Diffusion of Images. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 262–272. Springer, Heidelberg (2011)
Lenz, R., Latorre Carmona, P.: Hierarchical s(3)-coding of rgb histograms. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 188–200. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Åström, F., Zografos, V., Felsberg, M. (2013). Density Driven Diffusion. In: Kämäräinen, JK., Koskela, M. (eds) Image Analysis. SCIA 2013. Lecture Notes in Computer Science, vol 7944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38886-6_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-38886-6_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38885-9
Online ISBN: 978-3-642-38886-6
eBook Packages: Computer ScienceComputer Science (R0)