Abstract
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1), 10–29 (2012)
Leslie, S., Goh, A., Lewandowski, P.M., Huang, E.Y.H., de Castro Abreu, A.L., Berger, A.K., Ahmadi, H., Jayaratna, I., Shoji, S., Gill, I.S., Ukimura, O.: 2050 contemporary image-guided targeted prostate biopsy better characterizes cancer volume, gleason grade and its 3d location compared to systematic biopsy. The Journal of Urology 187(4, suppl.), e827 (2012)
Doyle, S., Feldman, M.D., Tomaszewski, J., Madabhushi, A.: A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Engineering 59(5), 1205–1218 (2012)
Beyersdorff, D., Winkel, A., Hamm, B., Lenk, S., Loening, S.A., Taupitz, M.: MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234(2), 576–581 (2005)
McNeal, J.E.: The zonal anatomy of the prostate. The Prostate 2(1), 35–49 (1981)
Villeirs, G., De Meerleer, G.: Magnetic resonance imaging (mri) anatomy of the prostate and application of mri in radiotherapy planning. European Journal of Radiology 63(3), 361–368 (2007)
Haffner, J., Potiron, E., Bouyé, S., Puech, P., Leroy, X., Lemaitre, L., Villers, A.: Peripheral zone prostate cancers: location and intraprostatic patterns of spread at histopathology. The Prostate 69(3), 276–282 (2009)
Reinsberg, S., Payne, G., Riches, S., Ashley, S., Brewster, J., Morgan, V., et al.: Combined use of diffusion-weighted mri and 1h mr spectroscopy to increase accuracy in prostate cancer detection. American Journal of Roentgenology 188(1), 91–98 (2007)
Kitajima, K., Kaji, Y., Fukabori, Y., Yoshida, K., Suganuma, N., Sugimura, K.: Prostate cancer detection with 3 t mri: Comparison of diffusion-weighted imaging and dynamic contrast-enhanced mri in combination with t2-weighted imaging. Journal of Magnetic Resonance Imaging 31(3), 625–631 (2010)
Kirby, R., Gilling, P.: Fast facts: benign prostatic hyperplasia. Health Press Limited (2011)
Ghose, S., Oliver, A., Martí, R., Lladó, X., Vilanova, J., Freixenet, J., Mitra, J., Sidibé, D., Meriaudeau, F.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Computer Methods and Programs in Biomedicine 108(1), 262–287 (2012)
Allen, P., Graham, J., Williamson, D., Hutchinson, C.: Differential segmentation of the prostate in mr images using combined 3d shape modelling and voxel classification. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 410–413. IEEE (2006)
Yin, Y., Fotin, S., Periaswamy, S., Kunz, J., Haldankar, H., Muradyan, N., Turkbey, B., Choyke, P.: Fully automated 3d prostate central gland segmentation in mr images: a logismos based approach. In: SPIE, p. 83143B (2012)
Makni, N., Iancu, A., Colot, O., Puech, P., Mordon, S., Betrouni, N., et al.: Zonal segmentation of prostate using multispectral magnetic resonance images. Medical Physics 38(11), 6093 (2011)
Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 413–420. Springer, Heidelberg (2012)
Rajchl, M., Yuan, J., White, J.A., Nambakhsh, C.M.S., Ukwatta, E., Li, F., Stirrat, J., Peters, T.M.: A fast convex optimization approach to segmenting 3D scar tissue from delayed-enhancement cardiac MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 659–666. Springer, Heidelberg (2012)
Delong, A., Gorelick, L., Schmidt, F.R., Veksler, O., Boykov, Y.: Interactive segmentation with super-labels. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 147–162. Springer, Heidelberg (2011)
Yuan, J., Qiu, W., Ukwatta, E., Rajchl, M., Sun, Y., Fenster, A.: An efficient convex optimization approach to 3D prostate MRI segmentation with generic star shape prior. In: Prostate MR Image Segmentation Challenge, MICCAI (2012)
Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)
Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR 2010 (2010)
Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (September 1999)
Hu, N., Downey, D.B., Fenster, A., Ladak, H.M.: Prostate boundary segmentation from 3D ultrasound images. Med. Phys. 30(7), 1648–1659 (2003)
Qiu, W., Yuan, J., Ukwatta, E., Tessier, D., Fenster, A.: Rotational-slice-based prostate segmentation using level set with shape constraint for 3D end-firing TRUS guided biopsy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 537–544. Springer, Heidelberg (2012)
Qiu, W., Yuan, J., Ukwatta, E., Tessier, D., Fenster, A.: Prostate segmentation in 3d TURS using convex optimization with shape constraint. In: SPIE, Medical Imaging (2013)
Mahdavi, S.S., Moradi, M., Wen, X., Morris, W.J., Salcudean, S.E.: Evaluation of visualization of the prostate gland in vibro-elastography images. Medical Image Analysis 15(4), 589–600 (2011)
Zou, K.H., McDermott, M.P.: Higher-moment approaches to approximate interval estimation for a certain intraclass correlation coefficient. Statistics in Medicine 18(15), 2051–2061 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A. (2013). Efficient 3D Multi-region Prostate MRI Segmentation Using Dual Optimization. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)