Abstract
The main consequences of corrosion are the costs derived from both the maintenance tasks as from the public safety protection. In this sense, artificial intelligence models are used to determine pitting corrosion behaviour of stainless steel. This work presents the C-MANTEC constructive neural network algorithm as an automatic system to determine the status pitting corrosion of that alloy. Several classification techniques are compared with our proposal: Linear Discriminant Analysis, k-Nearest Neighbor, Multilayer Perceptron, Support Vector Machines and Naive Bayes. The results obtained show the robustness and higher performance of the C-MANTEC algorithm in comparison to the other artificial intelligence models, corroborating the utility of the constructive neural networks paradigm in the modelling pitting corrosion problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmitt, G.: Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. The World Corrosion Organization (2009)
Kamrunnahar, M., Urquidi-Macdonald, M.: Prediction of corrosion behaviour of alloy 22 using neural network as a data mining tool. Corrosion Science 53, 961–967 (2011)
Cavanaugh, M., Buchheit, R., Birbilis, N.: Modeling the environmental dependence of pit growth using neural network approaches. Corrosion Science 52, 3070–3077 (2010)
Lajevardi, S., Shahrabi, T., Baigi, V., Shafiei, M.A.: Prediction of time to failure in stress corrosion cracking of 304 stainless steel in aqueous chloride solution by artificial neural network. Protection of Metals and Physical Chemistry of Surfaces 45, 610–615 (2009)
Pidaparti, R.M., Fang, L., Palakal, M.J.: Computational simulation of multi-pit corrosion process in materials. Computational Materials Science 41, 255–265 (2008)
Jiménez-Come, M.J., Muñoz, E., García, R., Matres, V., Martín, M.L., Trujillo, F., Turias, I.: Austenitic stainless steel en 1.4404 corrosion detection using classification techniques. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 193–201. Springer, Heidelberg (2011)
Jiménez-Come, M.J., Muñoz, E., García, R., Matres, V., Martín, M.L., Trujillo, F., Turias, I.: Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques. J. Applied Logic 10, 291–297 (2012)
Subirats, J.L., Franco, L., Jerez, J.M.: C-mantec: A novel constructive neural network algorithm incorporating competition between neurons. Neural Networks 26, 130–140 (2012)
Urda, D., Cañete, E., Subirats, J., Franco, L., Llopis, L., Jerez, J.: Energy efficient reprogramming in WSN using Constructive Neural Networks. International Journal of Innovative Computing, Information and Control 8, 7561–7578 (2012)
Urda, D., Subirats, J.L., Franco, L., Jerez, J.M.: Constructive neural networks to predict breast cancer outcome by using gene expression profiles. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part I. LNCS, vol. 6096, pp. 317–326. Springer, Heidelberg (2010)
Galvele, J.: Present state of understanding of the breakdown of passivity and repassivation. The Electrochemical Society, 285–326 (1979)
Merello, R., Botana, F., Botella, J., Matres, M., Marcos, M.: Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn N duplex stainless steels. Corrosion Science 45, 909–921 (2003)
Frean, M.: A “thermal” perceptron learning rule. Neural Comput. 4, 946–957 (1992)
Subirats, J.L., Franco, L., Gómez, I., Jerez, J.M.: Computational capabilities of feedforward neural networks the role of the output function. In: Proceedings of the XII CAEPIA 2007, Salamanca, Spain, vol. 2, pp. 231–238 (2008)
Subirats, J.L., Jerez, J.M., Franco, L.: A new decomposition algorithm for threshold synthesis and generalization of boolean functions. IEEE Transactions on Circuits and Systems 1, 3188–3196 (2008)
Jiang, W., Simon, R.: A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Statistics in Medicine 26, 5320–5334 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urda, D., Luque, R.M., Jiménez, M.J., Turias, I., Franco, L., Jerez, J.M. (2013). A Constructive Neural Network to Predict Pitting Corrosion Status of Stainless Steel. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-38679-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38678-7
Online ISBN: 978-3-642-38679-4
eBook Packages: Computer ScienceComputer Science (R0)