Abstract
Representing images by their interesting points has become recently one of the most effective methods of comparing images. One of the main challenges in image processing is to create a universal descriptor that will be invariant to changes in scale, rotation and illumination. One of the most popular and the most effective algorithm, which generates the key points is currently SURF. The problem discussed in this work concerns the comparison of objects belonging to the same category, but different from each other e.g. two different cars. We propose a new descriptor designed for objects in the image to compare similar objects. It is based on a graph, which was built on the basis of the key points that were generated using SURF algorithm. We present results of experiments which have been conducted for various objects and descriptors generated using the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J. Computer Vision 60(2), 91–110 (2004)
Ryu, J., Park, H., Park, J.: Corner classification using Harris algorithm. Electronics Letters 47(9), 536–538 (2011)
Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detector. Int. J. Comput. Vision 60(1), 63–86 (2004)
Kozat, S., Venkatesan, R., Mihcak, M.: Robust perceptual image hashing via matrix invariants. In: Proc. IEEE Int. Conf. Image Processing (ICIP), pp. 2442–2446 (2004)
Monga, V., Mhcak, M.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Trans. Inf. Forensics Securit 2(3), 376–390 (2007)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). International Journal of Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)
Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: 2007 IEEE Workshop on Automatic Identification Advanced Technologies, June 7-8, pp. 63–68 (2007), doi:10.1109/AUTOID.2007.380594
Achanta, R., Süsstrunk, S.: Saliency Detection for Content-aware Image Resizing. In: IEEE International Conference on Image Processing (2009)
Tadeusiewicz, R., Ogiela, M.R.: Why Automatic Understanding? In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 477–491. Springer, Heidelberg (2007)
Ogiela, M.R., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer. IEEE Engineering in Medicine and Biology Magazine 19(6), 94–105 (2000)
Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Computing in Intelligent Medical Pattern Recognition Systems. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCIS, vol. 344, pp. 851–856. Springer, Heidelberg (2006)
Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Intelligent Semantic Information Retrieval in Medical Pattern Cognitive Analysis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005, Part IV. LNCS, vol. 3483, pp. 852–857. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nowak, T., Najgebauer, P., Rygał, J., Scherer, R. (2013). A Novel Graph-Based Descriptor for Object Matching. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-38658-9_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38657-2
Online ISBN: 978-3-642-38658-9
eBook Packages: Computer ScienceComputer Science (R0)