A Novel Graph-Based Descriptor for Object Matching | SpringerLink
Skip to main content

A Novel Graph-Based Descriptor for Object Matching

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Included in the following conference series:

Abstract

Representing images by their interesting points has become recently one of the most effective methods of comparing images. One of the main challenges in image processing is to create a universal descriptor that will be invariant to changes in scale, rotation and illumination. One of the most popular and the most effective algorithm, which generates the key points is currently SURF. The problem discussed in this work concerns the comparison of objects belonging to the same category, but different from each other e.g. two different cars. We propose a new descriptor designed for objects in the image to compare similar objects. It is based on a graph, which was built on the basis of the key points that were generated using SURF algorithm. We present results of experiments which have been conducted for various objects and descriptors generated using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J. Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Ryu, J., Park, H., Park, J.: Corner classification using Harris algorithm. Electronics Letters 47(9), 536–538 (2011)

    Article  Google Scholar 

  3. Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  4. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detector. Int. J. Comput. Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  5. Kozat, S., Venkatesan, R., Mihcak, M.: Robust perceptual image hashing via matrix invariants. In: Proc. IEEE Int. Conf. Image Processing (ICIP), pp. 2442–2446 (2004)

    Google Scholar 

  6. Monga, V., Mhcak, M.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Trans. Inf. Forensics Securit 2(3), 376–390 (2007)

    Article  Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). International Journal of Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  8. Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: 2007 IEEE Workshop on Automatic Identification Advanced Technologies, June 7-8, pp. 63–68 (2007), doi:10.1109/AUTOID.2007.380594

    Google Scholar 

  9. Achanta, R., Süsstrunk, S.: Saliency Detection for Content-aware Image Resizing. In: IEEE International Conference on Image Processing (2009)

    Google Scholar 

  10. Tadeusiewicz, R., Ogiela, M.R.: Why Automatic Understanding? In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 477–491. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Ogiela, M.R., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer. IEEE Engineering in Medicine and Biology Magazine 19(6), 94–105 (2000)

    Article  Google Scholar 

  12. Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Computing in Intelligent Medical Pattern Recognition Systems. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCIS, vol. 344, pp. 851–856. Springer, Heidelberg (2006)

    Google Scholar 

  13. Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Intelligent Semantic Information Retrieval in Medical Pattern Cognitive Analysis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005, Part IV. LNCS, vol. 3483, pp. 852–857. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowak, T., Najgebauer, P., Rygał, J., Scherer, R. (2013). A Novel Graph-Based Descriptor for Object Matching. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics