Comparison between PSO and AIS on the Basis of Identification of Material Constants in Piezoelectrics | SpringerLink
Skip to main content

Comparison between PSO and AIS on the Basis of Identification of Material Constants in Piezoelectrics

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Abstract

The paper deals with an application of the artificial immune system (AIS) and particle swarm optimizer (PSO) to the identification problem of piezoelectric structures analyzed by the boundary element method (BEM). The AIS and PSO is applied to identify material properties of piezoelectrics. The AIS is a computational adaptive system inspired by the principles, processes and mechanisms of biological immune systems. The algorithms typically use the characteristics of the immune systems like learning and memory to simulate and solve a problem in a computational manner. The PSO algorithm is based on the models of the animals social behaviours: moving and living in the groups. PSO algorithm realizes directed motion of the particles in n-dimensional space to search for solution for n-variable optimisation problem.The main advantage of the bioinspired methods (AIS and PSO), contrary to gradient methods of optimization, is the fact that it does not need any information about the gradient of fitness function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Araujo, A.L., Mota Soares, C.M., Herskovits, J., Pedresen, P.: Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimization and experimental vibration data. In: Composite Structures, pp. 307–318 (2002)

    Google Scholar 

  2. Araujo, A.L., Mota Soares, C.M., Herskovits, J., Pedresen, P.: Estimation of piezoelastic and visoelastic properties in laminated structures. In: Composite Structures, pp. 168–174 (2009)

    Google Scholar 

  3. Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization in an artificial immune system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 3–10. Morgan Kaufmann, New York (2002)

    Google Scholar 

  4. Brebbia, C.A., Dominguez, J.: Boundary elements. In: An introductory course. Computational Mechanics Publications, McGraw, Hill Book Company, Southampton, Boston (1992)

    Google Scholar 

  5. Brigham, J.C., Aquino, W.: Surrogate-model accelerated random search algorithm for global optimization with applications to inverse material identification. Computer Methods in Applied Mechanics and Engineering 196, 4561–4576 (2007)

    Article  MATH  Google Scholar 

  6. Burczynski, T., John, A., Kuś, W., Orantek, P., Poteralski, A.: The evolutionary algorithm and hipersurface in identification of material coefficients of human pelvic bone. Acta of Bioengineering and Biomechanics 5, 61–66 (2003)

    Google Scholar 

  7. Burczyński, T., Poteralski, A., Szczepanik, M.: Genetic generation of 2-D and 3-D structures Second M.I.T. Conference on Computational Fluid and Solid Mechanics Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A

    Google Scholar 

  8. Burczyński, T., Poteralski, A., Szczepanik, M.: Topological evolutionary computing in the optimal design of 2D and 3D structures. Engineering Optimization 39(7), 811–830

    Google Scholar 

  9. Burczynski, T., Bereta, M., Poteralski, A., Szczepanik, M.: Immune Computing: Intelligent Methodology and Its Applications in Bioengineering and Computational Mechanics. In: Computer Methods in Mechanics, pp. 165–181 (2010)

    Google Scholar 

  10. Burczyński, T., Kuś, W., Długosz, A., Poteralski, A., Szczepanik, M.: Sequential and distributed evolutionary computations in structural optimization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1069–1074. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Burczynski, T., Dlugosz, A., Kus, W., Orantek, P., Poteralski, A.: Intelligent computing in evolutionary optimal shaping of solids. In: 3rd International Conference on Computing, Communications and Control Technologies, vol. 3, pp. 294–298 (2005)

    Google Scholar 

  12. de Castro, L.N., Timmis, J.: Artificial immune systems as a novel soft computing paradigm. Soft Computing 7(8), 526–544 (2003)

    Article  Google Scholar 

  13. Chaparro, B.M., Thullier, S., Menezes, L.F., Manach, P.Y., Fernandes, J.V.: Material parameters identification: Gradient-based, genetic and hybrid optimization. Computational Materials Science 44, 339–346 (2008)

    Article  Google Scholar 

  14. Comino, L., Gallego, R., Rus, G.: Combining topological sensitivity and genetic algorithms for identification inverse problems in anisotropic materials. Computational Mechanics 41, 231–242 (2008)

    Article  MATH  Google Scholar 

  15. Dlugosz, A.: Evolutionary computation in thermoelastic problems. In: IUTAM Symposium on Evolutionary Methods in Mechanics, vol. 117, pp. 69–80 (2004)

    Google Scholar 

  16. Du, X., Zengdi: Structural physical parameter identification based on evolutionary-simplex algorithm and structural dynamic response. Earthquake Engineering and Engineering Vibration 2, 225–236 (2003)

    Article  Google Scholar 

  17. Dziatkiewicz, G., Kuś, W., Burczyński, T., Fedeliński, P.: Identification of piezoelectric material constants using distributed evolutionary algorithm. In: Methods of Artificial Intelligence, AI-METH 2005, Gliwice, pp. 47–48 (2005)

    Google Scholar 

  18. Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, S. (ed.) The Ubiquity of Chaos. AAAS Publications, Washington, DC (1990)

    Google Scholar 

  19. Hwang, S.-F., Wu, J.-C., He, R.S.: Identification of effective elastic constants of composite plates based on a hybrid genetic algorithm. Composite Structures 90, 217–224 (2009)

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimisation. In: Proceedings of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  21. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)

    Google Scholar 

  22. Mrozek, D., Małysiak-Mrozek, B.: An Improved Method for Protein Similarity Searching by Alignment of Fuzzy Energy Signatures. International Journal of Computational Intelligence Systems 4(1), 75–88 (2011)

    Article  Google Scholar 

  23. Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., Burczyński, T.: Immune identification of piezoelectric material constants using BEM. In: Inverse Problems in Science and Engineering, vol. 19(1). Taylor & Francis

    Google Scholar 

  24. Pan, E.: A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Engineering Analysis with Boundary Elements 23, 67–76 (1999)

    Article  MATH  Google Scholar 

  25. Ptak, M., Ptak, W.: Basics of Immunology. Jagiellonian University Press, Cracow (2000)

    Google Scholar 

  26. Reynolds, C.W.: Flocks, herds, and schools, A distributed behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  27. Silva, M.F.T., Borges, L.M.S.A., Rochinha, F.A., de Carvalho, L.A.V.: A genetic algorithm applied to composite elastic parameters identification. In: IPSE, vol. 12, pp. 17–28 (2004)

    Google Scholar 

  28. Tan, K.C., Goh, C.K., Mamun, A.A., Ei, E.Z.: An evolutionary artificial immune system for multi-objective optimization. European Journal of Operational Research, 371–392 (2008)

    Google Scholar 

  29. Warwick, K., Kang, Y.-H., Mitchell, R.J.: Genetic least squares for system identification. Soft Computing 3, 200–205 (1999)

    Article  Google Scholar 

  30. Zieniuk, E., Gabrel, W.: Genetic algorithms based on a new system of integral equations in identification of material constants for anisotropic media. Mechanics of Composite Materials 37, 217–222 (2001)

    Article  Google Scholar 

  31. Wierzchoń, S.T.: Artificial Immune Systems: Theory and Applications. EXIT Press (2001)

    Google Scholar 

  32. Zilong, G., Sun’an, W., Jian, Z.: A novel immune evolutionary algorithm incorporating chaos optimization. Pattern Recognition Letters 27, 2–8 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., Burczyński, T. (2013). Comparison between PSO and AIS on the Basis of Identification of Material Constants in Piezoelectrics. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics