Abstract
The paper deals with an application of the artificial immune system (AIS) and particle swarm optimizer (PSO) to the identification problem of piezoelectric structures analyzed by the boundary element method (BEM). The AIS and PSO is applied to identify material properties of piezoelectrics. The AIS is a computational adaptive system inspired by the principles, processes and mechanisms of biological immune systems. The algorithms typically use the characteristics of the immune systems like learning and memory to simulate and solve a problem in a computational manner. The PSO algorithm is based on the models of the animals social behaviours: moving and living in the groups. PSO algorithm realizes directed motion of the particles in n-dimensional space to search for solution for n-variable optimisation problem.The main advantage of the bioinspired methods (AIS and PSO), contrary to gradient methods of optimization, is the fact that it does not need any information about the gradient of fitness function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, A.L., Mota Soares, C.M., Herskovits, J., Pedresen, P.: Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimization and experimental vibration data. In: Composite Structures, pp. 307–318 (2002)
Araujo, A.L., Mota Soares, C.M., Herskovits, J., Pedresen, P.: Estimation of piezoelastic and visoelastic properties in laminated structures. In: Composite Structures, pp. 168–174 (2009)
Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization in an artificial immune system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 3–10. Morgan Kaufmann, New York (2002)
Brebbia, C.A., Dominguez, J.: Boundary elements. In: An introductory course. Computational Mechanics Publications, McGraw, Hill Book Company, Southampton, Boston (1992)
Brigham, J.C., Aquino, W.: Surrogate-model accelerated random search algorithm for global optimization with applications to inverse material identification. Computer Methods in Applied Mechanics and Engineering 196, 4561–4576 (2007)
Burczynski, T., John, A., Kuś, W., Orantek, P., Poteralski, A.: The evolutionary algorithm and hipersurface in identification of material coefficients of human pelvic bone. Acta of Bioengineering and Biomechanics 5, 61–66 (2003)
Burczyński, T., Poteralski, A., Szczepanik, M.: Genetic generation of 2-D and 3-D structures Second M.I.T. Conference on Computational Fluid and Solid Mechanics Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A
Burczyński, T., Poteralski, A., Szczepanik, M.: Topological evolutionary computing in the optimal design of 2D and 3D structures. Engineering Optimization 39(7), 811–830
Burczynski, T., Bereta, M., Poteralski, A., Szczepanik, M.: Immune Computing: Intelligent Methodology and Its Applications in Bioengineering and Computational Mechanics. In: Computer Methods in Mechanics, pp. 165–181 (2010)
Burczyński, T., Kuś, W., Długosz, A., Poteralski, A., Szczepanik, M.: Sequential and distributed evolutionary computations in structural optimization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1069–1074. Springer, Heidelberg (2004)
Burczynski, T., Dlugosz, A., Kus, W., Orantek, P., Poteralski, A.: Intelligent computing in evolutionary optimal shaping of solids. In: 3rd International Conference on Computing, Communications and Control Technologies, vol. 3, pp. 294–298 (2005)
de Castro, L.N., Timmis, J.: Artificial immune systems as a novel soft computing paradigm. Soft Computing 7(8), 526–544 (2003)
Chaparro, B.M., Thullier, S., Menezes, L.F., Manach, P.Y., Fernandes, J.V.: Material parameters identification: Gradient-based, genetic and hybrid optimization. Computational Materials Science 44, 339–346 (2008)
Comino, L., Gallego, R., Rus, G.: Combining topological sensitivity and genetic algorithms for identification inverse problems in anisotropic materials. Computational Mechanics 41, 231–242 (2008)
Dlugosz, A.: Evolutionary computation in thermoelastic problems. In: IUTAM Symposium on Evolutionary Methods in Mechanics, vol. 117, pp. 69–80 (2004)
Du, X., Zengdi: Structural physical parameter identification based on evolutionary-simplex algorithm and structural dynamic response. Earthquake Engineering and Engineering Vibration 2, 225–236 (2003)
Dziatkiewicz, G., Kuś, W., Burczyński, T., Fedeliński, P.: Identification of piezoelectric material constants using distributed evolutionary algorithm. In: Methods of Artificial Intelligence, AI-METH 2005, Gliwice, pp. 47–48 (2005)
Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, S. (ed.) The Ubiquity of Chaos. AAAS Publications, Washington, DC (1990)
Hwang, S.-F., Wu, J.-C., He, R.S.: Identification of effective elastic constants of composite plates based on a hybrid genetic algorithm. Composite Structures 90, 217–224 (2009)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimisation. In: Proceedings of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
Mrozek, D., Małysiak-Mrozek, B.: An Improved Method for Protein Similarity Searching by Alignment of Fuzzy Energy Signatures. International Journal of Computational Intelligence Systems 4(1), 75–88 (2011)
Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., Burczyński, T.: Immune identification of piezoelectric material constants using BEM. In: Inverse Problems in Science and Engineering, vol. 19(1). Taylor & Francis
Pan, E.: A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Engineering Analysis with Boundary Elements 23, 67–76 (1999)
Ptak, M., Ptak, W.: Basics of Immunology. Jagiellonian University Press, Cracow (2000)
Reynolds, C.W.: Flocks, herds, and schools, A distributed behavioral model. Computer Graphics 21, 25–34 (1987)
Silva, M.F.T., Borges, L.M.S.A., Rochinha, F.A., de Carvalho, L.A.V.: A genetic algorithm applied to composite elastic parameters identification. In: IPSE, vol. 12, pp. 17–28 (2004)
Tan, K.C., Goh, C.K., Mamun, A.A., Ei, E.Z.: An evolutionary artificial immune system for multi-objective optimization. European Journal of Operational Research, 371–392 (2008)
Warwick, K., Kang, Y.-H., Mitchell, R.J.: Genetic least squares for system identification. Soft Computing 3, 200–205 (1999)
Zieniuk, E., Gabrel, W.: Genetic algorithms based on a new system of integral equations in identification of material constants for anisotropic media. Mechanics of Composite Materials 37, 217–222 (2001)
Wierzchoń, S.T.: Artificial Immune Systems: Theory and Applications. EXIT Press (2001)
Zilong, G., Sun’an, W., Jian, Z.: A novel immune evolutionary algorithm incorporating chaos optimization. Pattern Recognition Letters 27, 2–8 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., Burczyński, T. (2013). Comparison between PSO and AIS on the Basis of Identification of Material Constants in Piezoelectrics. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-38610-7_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38609-1
Online ISBN: 978-3-642-38610-7
eBook Packages: Computer ScienceComputer Science (R0)