HRoBi – The Algorithm for Hierarchical Rough Biclustering | SpringerLink
Skip to main content

HRoBi – The Algorithm for Hierarchical Rough Biclustering

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7895))

Included in the following conference series:

  • 2284 Accesses

Abstract

The article presents the new algorithm of biclustering, based on the rough biclustering foundations. Each rough bicluster is considered as the ordered pair of its lower and upper approximation. Notions of lower and upper bicluster approximation are derived from the Pawlak rough sets theory. Every considered discrete value in the data can be covered with more than one rough bicluster. The presented algorithm is hierarchical, so the number of biclusters can be controlled by the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Sub-Matrix Problem. J. of Comput. Biol. 10(3-4), 373–384 (2003)

    Article  Google Scholar 

  2. Chang, F.C., Huang, H.C.: A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences 192, 39–49 (2012)

    Article  Google Scholar 

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int. Conf. on Intell. Syst. for Mol. Biol., pp. 93–103 (2000)

    Google Scholar 

  4. Hartigan, J.A.: Direct Clustering of a Data Matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)

    Article  Google Scholar 

  5. Michalak, M., Stawarz, M.: Generating and Postprocessing of Biclusters from Discrete Value Matrices. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 103–112. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Michalak, M.: Foundations of Rough Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 144–151. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Stawarz, M., Michalak, M.: eBi – The Algorithm for Exact Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 327–334. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Pawlak, Z.: Rough Sets. J. of Comput. and Inf. Sci. 5(11), 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  9. Pensa, R., Boulicaut, J.F.: Constrained Co-clustering of Gene Expression Data, Proc. SIAM Int. Conf. on Data Min., SDM 2008, pp. 25–36 (2008)

    Google Scholar 

  10. Yang, E., Foteinou, P.T., King, K.R., Yarmush, M.L., Androulakis, I.P.: A Novel Non-overlapping biclustering Algorithm for Network Generation Using Living Cell Array Data. Bioinforma 17(23), 2306–2313 (2007)

    Article  Google Scholar 

  11. Zadeh, L.H.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michalak, M., Stawarz, M. (2013). HRoBi – The Algorithm for Hierarchical Rough Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics