Abstract
The article presents the new algorithm of biclustering, based on the rough biclustering foundations. Each rough bicluster is considered as the ordered pair of its lower and upper approximation. Notions of lower and upper bicluster approximation are derived from the Pawlak rough sets theory. Every considered discrete value in the data can be covered with more than one rough bicluster. The presented algorithm is hierarchical, so the number of biclusters can be controlled by the user.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Sub-Matrix Problem. J. of Comput. Biol. 10(3-4), 373–384 (2003)
Chang, F.C., Huang, H.C.: A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences 192, 39–49 (2012)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int. Conf. on Intell. Syst. for Mol. Biol., pp. 93–103 (2000)
Hartigan, J.A.: Direct Clustering of a Data Matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)
Michalak, M., Stawarz, M.: Generating and Postprocessing of Biclusters from Discrete Value Matrices. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 103–112. Springer, Heidelberg (2011)
Michalak, M.: Foundations of Rough Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 144–151. Springer, Heidelberg (2012)
Stawarz, M., Michalak, M.: eBi – The Algorithm for Exact Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 327–334. Springer, Heidelberg (2012)
Pawlak, Z.: Rough Sets. J. of Comput. and Inf. Sci. 5(11), 341–356 (1982)
Pensa, R., Boulicaut, J.F.: Constrained Co-clustering of Gene Expression Data, Proc. SIAM Int. Conf. on Data Min., SDM 2008, pp. 25–36 (2008)
Yang, E., Foteinou, P.T., King, K.R., Yarmush, M.L., Androulakis, I.P.: A Novel Non-overlapping biclustering Algorithm for Network Generation Using Living Cell Array Data. Bioinforma 17(23), 2306–2313 (2007)
Zadeh, L.H.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michalak, M., Stawarz, M. (2013). HRoBi – The Algorithm for Hierarchical Rough Biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-38610-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38609-1
Online ISBN: 978-3-642-38610-7
eBook Packages: Computer ScienceComputer Science (R0)