Abstract
This paper is focused on a comparative analysis of the performance of two master-slave parallelization methods, the basic generational scheme and the steady-state asynchronous scheme. Both can be used to improve the convergence speed of multi-objective evolutionary algorithms (MOEAs) that rely on time-intensive fitness evaluation functions. The importance of this work stems from the fact that a correct choice for one or the other parallelization method can lead to considerable speed improvements with regards to the overall duration of the optimization. Our main aim is to provide practitioners of MOEAs with a simple but effective method of deciding which master-slave parallelization option is better when dealing with a time-constrained optimization process.
This work was conducted in the realm of the research program at the Austrian Center of Competence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian government. The work-related projects are kindly supported by the Austrian government, the Upper Austrian government and the Johannes Kepler University Linz. The authors thank all involved partners for their support. This publication reflects only the authors’ views.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello, C., Lamont, G., Van Veldhuisen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series. Springer (2007)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: IEEE Congress on Evolutionary Computation (CEC 2002), pp. 825–830 (2002)
Durillo, J., Nebro, A., Luna, F., Alba, E.: On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 183–197. Springer, Heidelberg (2009)
Durillo, J.J., Nebro, A.J.: JMETAL: A Java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)
Durillo, J., Nebro, A., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), pp. 1–8 (2008)
Fleischer, M.: The measure of Pareto optima. applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1991)
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302 (2009)
Yagoubi, M., Thobois, L., Schoenauert, M.: Asynchronous evolutionary multi-objective algorithms with heterogeneous evaluation costs. In: IEEE Congress on Evolutionary Computation (CEC 2011), pp. 21–28 (2011)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering, CIMNE (2002)
Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation 14(1), 58–79 (2010)
Zăvoianu, A.-C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.P.: A hybrid soft computing approach for optimizing design parameters of electrical drives. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 347–358. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zăvoianu, AC., Lughofer, E., Koppelstätter, W., Weidenholzer, G., Amrhein, W., Klement, E.P. (2013). On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-38610-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38609-1
Online ISBN: 978-3-642-38610-7
eBook Packages: Computer ScienceComputer Science (R0)