On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms | SpringerLink
Skip to main content

On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Abstract

This paper is focused on a comparative analysis of the performance of two master-slave parallelization methods, the basic generational scheme and the steady-state asynchronous scheme. Both can be used to improve the convergence speed of multi-objective evolutionary algorithms (MOEAs) that rely on time-intensive fitness evaluation functions. The importance of this work stems from the fact that a correct choice for one or the other parallelization method can lead to considerable speed improvements with regards to the overall duration of the optimization. Our main aim is to provide practitioners of MOEAs with a simple but effective method of deciding which master-slave parallelization option is better when dealing with a time-constrained optimization process.

This work was conducted in the realm of the research program at the Austrian Center of Competence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian government. The work-related projects are kindly supported by the Austrian government, the Upper Austrian government and the Johannes Kepler University Linz. The authors thank all involved partners for their support. This publication reflects only the authors’ views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C., Lamont, G., Van Veldhuisen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series. Springer (2007)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: IEEE Congress on Evolutionary Computation (CEC 2002), pp. 825–830 (2002)

    Google Scholar 

  6. Durillo, J., Nebro, A., Luna, F., Alba, E.: On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 183–197. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: JMETAL: A Java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)

    Article  Google Scholar 

  8. Durillo, J., Nebro, A., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), pp. 1–8 (2008)

    Google Scholar 

  9. Fleischer, M.: The measure of Pareto optima. applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1991)

    Google Scholar 

  11. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302 (2009)

    Article  Google Scholar 

  13. Yagoubi, M., Thobois, L., Schoenauert, M.: Asynchronous evolutionary multi-objective algorithms with heterogeneous evaluation costs. In: IEEE Congress on Evolutionary Computation (CEC 2011), pp. 21–28 (2011)

    Google Scholar 

  14. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering, CIMNE (2002)

    Google Scholar 

  16. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation 14(1), 58–79 (2010)

    Article  Google Scholar 

  17. Zăvoianu, A.-C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.P.: A hybrid soft computing approach for optimizing design parameters of electrical drives. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 347–358. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zăvoianu, AC., Lughofer, E., Koppelstätter, W., Weidenholzer, G., Amrhein, W., Klement, E.P. (2013). On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics