Abstract
We describe the open-source tool dReal, an SMT solver for nonlinear formulas over the reals. The tool can handle various nonlinear real functions such as polynomials, trigonometric functions, exponential functions, etc. dReal implements the framework of δ-complete decision procedures: It returns either unsat or δ -sat on input formulas, where δ is a numerical error bound specified by the user. dReal also produces certificates of correctness for both δ -sat (a solution) and unsat answers (a proof of unsatisfiability).
This research was sponsored by the National Science Foundation grants no. DMS1068829, no. CNS0926181 and no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarpour, B., Paulson, L.C.: Metitarski: An automatic prover for the elementary functions. In: AISC/MKM/Calculemus, pp. 217–231 (2008)
Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories, Edinburgh, UK (2010)
Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 16. Elsevier (2006)
Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)
Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages, pp. 134–183 (1975)
Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)
Ganai, M.K., Ivančić, F.: Efficient decision procedure for non-linear arithmetic constraints using cordic. In: Formal Methods in Computer Aided Design (FMCAD) (2009)
Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. In: IJCAR, pp. 286–300 (2012)
Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)
Gao, S., Ganai, M., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic. In: FMCAD (2010)
Gao, S., Kong, S., Wang, M., Clarke, E.: Extracting proofs from a numerically-driven decision procedure, CMU SCS Technical Report CMU-CS-13-104 (2013)
Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)
Hales, T.C.: Introduction to the flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs, Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 05021, Internationales Begegnungs- und Forschungszentrum für Informatik, IBFI (2005)
Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR, pp. 339–354 (2012)
Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. Journal of Automated Reasoning (2012) (accepted for publication)
Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: Calcs: Smt solving for non-linear convex constraints. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 71–79. IEEE (2010)
Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 122–137. Springer, Heidelberg (2009)
Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, S., Kong, S., Clarke, E.M. (2013). dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-38574-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38573-5
Online ISBN: 978-3-642-38574-2
eBook Packages: Computer ScienceComputer Science (R0)