dReal: An SMT Solver for Nonlinear Theories over the Reals | SpringerLink
Skip to main content

dReal: An SMT Solver for Nonlinear Theories over the Reals

  • Conference paper
Automated Deduction – CADE-24 (CADE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7898))

Included in the following conference series:

Abstract

We describe the open-source tool dReal, an SMT solver for nonlinear formulas over the reals. The tool can handle various nonlinear real functions such as polynomials, trigonometric functions, exponential functions, etc. dReal implements the framework of δ-complete decision procedures: It returns either unsat or δ -sat on input formulas, where δ is a numerical error bound specified by the user. dReal also produces certificates of correctness for both δ -sat (a solution) and unsat answers (a proof of unsatisfiability).

This research was sponsored by the National Science Foundation grants no. DMS1068829, no. CNS0926181 and no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic prover for the elementary functions. In: AISC/MKM/Calculemus, pp. 217–231 (2008)

    Google Scholar 

  2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories, Edinburgh, UK (2010)

    Google Scholar 

  3. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 16. Elsevier (2006)

    Google Scholar 

  4. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)

    Google Scholar 

  5. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages, pp. 134–183 (1975)

    Google Scholar 

  7. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)

    Google Scholar 

  9. Ganai, M.K., Ivančić, F.: Efficient decision procedure for non-linear arithmetic constraints using cordic. In: Formal Methods in Computer Aided Design (FMCAD) (2009)

    Google Scholar 

  10. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. In: IJCAR, pp. 286–300 (2012)

    Google Scholar 

  11. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)

    Google Scholar 

  12. Gao, S., Ganai, M., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic. In: FMCAD (2010)

    Google Scholar 

  13. Gao, S., Kong, S., Wang, M., Clarke, E.: Extracting proofs from a numerically-driven decision procedure, CMU SCS Technical Report CMU-CS-13-104 (2013)

    Google Scholar 

  14. Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  15. Hales, T.C.: Introduction to the flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs, Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 05021, Internationales Begegnungs- und Forschungszentrum für Informatik, IBFI (2005)

    Google Scholar 

  16. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR, pp. 339–354 (2012)

    Google Scholar 

  17. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. Journal of Automated Reasoning (2012) (accepted for publication)

    Google Scholar 

  18. Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: Calcs: Smt solving for non-linear convex constraints. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 71–79. IEEE (2010)

    Google Scholar 

  19. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 122–137. Springer, Heidelberg (2009)

    Google Scholar 

  20. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, S., Kong, S., Clarke, E.M. (2013). dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics